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1. Prove that the following are all equal to the radical

• The union of all quasi-regular right ideals.

• The union of all quasi-regular left ideals.

• {z ∈ A |xzy is quasi-regular for all x and y}.

That the radical is the union of all quasi-regular right ideals is just a
restatement of the internal characterization of the radical in §1.5 of the
notes. By the left analogue of this restatement, the left radical is the
union of all quasi-regular left ideals. But, as observed in §1.5, the left
radical equals the right radical.

2. Prove or disprove: the ring of finite rank linear transformations of a
vector space (possibly infinite dimensional) is simple.

Let t0 and t be a finite rank linear transformations. We will prove that
t can be written as a finite sum

∑
xit0yi with xi and yi finite rank

linear transformations. We may assume that the rank of t is 1, for, as
is easily seen, t is a finite sum of rank 1 transformations.

So let K is the codimension 1 subspace that is the kernel of t and let
v be not in K. Since t0 6= 0, there exists v0 such that tv0 6= 0. Let y
be the linear transformation that is 0 on K and maps v to v0; and let
x be a linear transformation of finite rank such that xtv0 = w. Then
xt0y = t, and we are done.

3. Let V be a finite dimensional vector space over a field k and Endk(V )
the set of all k-linear maps from V to itself. Suppose that R is a subset
of Endk(V ) that is an additive subgroup and is closed under multipli-
cation. Assume that given any two linearly independent elements v1, v2
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of V and any two elements w1, w2 of V , there exists an element r of R
such that rv1 = w1 and rv2 = w2. Show that R equals Endk(V ).

A proof from first principles should be easy to give, but here is a “high
level” proof. Since R is 2-transitive, it follows from an observation in
§3 of the notes that EndR(V ) = k. But V is also irreducible for R (1-
transitivity is enough for this), so, by the density theorem, R is dense
for EndR(V ) = k. So R = Endk(V ) by the finite dimensionality of V
over k.

4. Prove or disprove: Let V be a finite dimensional vector space over
a field k and Endk(V ) the set of all k-linear maps from V to itself.
Suppose that A is a subring of Endk(V ) and that V is irreducible as
an A-module. Then EndR(V ) = k.

The statement is not true as the following example shows. Let k be
the field R of real numbers and let V be the Cartesian plane over R.
Let G = SO(2) be the the circle group acting on V in the standard
way. Then V is irreducible for G and so also for the group ring A over
R of G. The group G being abelian, the commutator of A contains A
in particular, and so is bigger than k = R.

5. Show that there is a one-to-one inclusion reversing correspondence be-
tween Γ-subspaces W of a finite dimensional Γ-vector space V and the
right ideals a of EndΓV : W 7→ W⊥ and a 7→ a⊥.

6. Let k be a field (take it to be the field C of complex numbers if you
wish), x a variable over k, and k(x) the field of rational functions1.
Let D : k(x) → k(x) be the map which takes a rational function to its
derivative with respect to x. Then D is k-linear and satisfies the Liebniz
rule: D(fg) = fD(g)+gD(f). We can think of a “polynomial” amDm+
am−1D

m−1 + . . .+a1D+a0 in D with coefficients am, am−1, . . . , a1, a0 in
k(x) as an operator on k(x): elements of k(x) act by multiplication and
Dk acts as the kth-derivative. Let R be the ring of all such polynomial
operators on k(x). It is associative and has an identity but is not
commutative.

1A rational function is a quotient p(x)/q(x) of polynomials p(x) and q(x) having coef-
ficients in the field k with q(x) 6= 0.
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(a) Show that R has no zero divisors: that is, if rs = 0 with r, s in R,
then either r = 0 or s = 0.

(b) Show that every left ideal of R is generated by a single element.

(c) Show that every right ideal of R is generated by a single element.

(d) Show that every two-sided ideal of R has an element which gen-
erates it both as a left and as a right ideal.

(e) Let I be a two-sided ideal and a an element of R such that Ra =
I = aR. Show that a commutes with every element of k(x). Show
further that a belongs to k(x) so that either I = 0 or I = R.
(Hint: Given b in k(x) write ba = ac. Prove that c belongs to
k(x).)

(f) Show that R does not contain minimal non-zero one-sided (left or
right) ideals.

(a) If amDm is the leading term of a polynomial and bnD
n the leading

term of another, then ambnD
m+n is the leading term of the product

the Liebniz rule not withstanding.

(b) Choose a polynomial of least degree in the ideal. We may take it to
be monic by multiplying on the left by a suitable element of k(x).
Any polynomial of degree that is not less this polynomial can be
divided (on the left) just like in the usual case. The remainder is
a polynomial of lesser degree than the divider and belongs to the
ideal. It must therefore be 0.

(c) Similar to item 6b. We can also divide “on the right” a polynomial
of higher degree by a polynomial of lower degree.

(d) Let I be a 2-sided ideal. The two items above imply we can find
a and b such that I = Ra and I = bR. Write a = bu and b = va
so that a = vau. Since au belongs to I, there exists u′ such that
au = u′a. We thus have a = vu′a. Cancelling a (see the first
item) we get 1 = vu′. Thus v is a unit. Substituting Rv for R in
I = Ra, we get I = Rva = Rb.

(e) Continuing from where the hint left off, since the degrees on both
sides of ba = ac are equal, we conclude that c belongs to k(x).
Comparison of highest degree terms gives b = c. If a has degree
m > 1, taking b in k(x) and comparing the coefficient of Dm−1 in

3



ba = ab gives that Db = 0, a contradiction. Thus a belongs to
k(x).

(f) If we multiply a generator of a non-zero one-sided ideal by a poly-
nomial of positive degree we get a generator of a strictly smaller
non-zero ideal.
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