Exercises
For mini-course as part of Amri's
Algebra course
October 2006

1. Prove that the following are all equal to the radical

- The union of all quasi-regular right ideals.
- The union of all quasi-regular left ideals.
- $\{z \in A \mid x z y$ is quasi-regular for all x and $y\}$.

That the radical is the union of all quasi-regular right ideals is just a restatement of the internal characterization of the radical in $\S 1.5$ of the notes. By the left analogue of this restatement, the left radical is the union of all quasi-regular left ideals. But, as observed in §1.5, the left radical equals the right radical.
2. Prove or disprove: the ring of finite rank linear transformations of a vector space (possibly infinite dimensional) is simple.
Let t_{0} and t be a finite rank linear transformations. We will prove that t can be written as a finite sum $\sum x_{i} t_{0} y_{i}$ with x_{i} and y_{i} finite rank linear transformations. We may assume that the rank of t is 1 , for, as is easily seen, t is a finite sum of rank 1 transformations.
So let K is the codimension 1 subspace that is the kernel of t and let v be not in K. Since $t_{0} \neq 0$, there exists v_{0} such that $t v_{0} \neq 0$. Let y be the linear transformation that is 0 on K and maps v to v_{0}; and let x be a linear transformation of finite rank such that $x t v_{0}=w$. Then $x t_{0} y=t$, and we are done.
3. Let V be a finite dimensional vector space over a field k and $\operatorname{End}_{k}(V)$ the set of all k-linear maps from V to itself. Suppose that R is a subset of $\operatorname{End}_{k}(V)$ that is an additive subgroup and is closed under multiplication. Assume that given any two linearly independent elements v_{1}, v_{2}
of V and any two elements w_{1}, w_{2} of V, there exists an element r of R such that $r v_{1}=w_{1}$ and $r v_{2}=w_{2}$. Show that R equals $\operatorname{End}_{k}(V)$.
A proof from first principles should be easy to give, but here is a "high level" proof. Since R is 2-transitive, it follows from an observation in $\S 3$ of the notes that $\operatorname{End}_{R}(V)=k$. But V is also irreducible for R (1transitivity is enough for this), so, by the density theorem, R is dense for $\operatorname{End}_{R}(V)=k$. So $R=\operatorname{End}_{k}(V)$ by the finite dimensionality of V over k.
4. Prove or disprove: Let V be a finite dimensional vector space over a field k and $\operatorname{End}_{k}(V)$ the set of all k-linear maps from V to itself. Suppose that A is a subring of $\operatorname{End}_{k}(V)$ and that V is irreducible as an A-module. Then $\operatorname{End}_{R}(V)=k$.

The statement is not true as the following example shows. Let k be the field \mathbb{R} of real numbers and let V be the Cartesian plane over \mathbb{R}. Let $G=S O(2)$ be the the circle group acting on V in the standard way. Then V is irreducible for G and so also for the group ring A over \mathbb{R} of G. The group G being abelian, the commutator of A contains A in particular, and so is bigger than $k=\mathbb{R}$.
5. Show that there is a one-to-one inclusion reversing correspondence between Γ-subspaces W of a finite dimensional Γ-vector space V and the right ideals \mathfrak{a} of $\operatorname{End}_{\Gamma} V: W \mapsto W^{\perp}$ and $\mathfrak{a} \mapsto \mathfrak{a}^{\perp}$.
6. Let k be a field (take it to be the field \mathbb{C} of complex numbers if you wish), x a variable over k, and $k(x)$ the field of rational functions ${ }^{1}$. Let $D: k(x) \rightarrow k(x)$ be the map which takes a rational function to its derivative with respect to x. Then D is k-linear and satisfies the Liebniz rule: $D(f g)=f D(g)+g D(f)$. We can think of a "polynomial" $a_{m} D^{m}+$ $a_{m-1} D^{m-1}+\ldots+a_{1} D+a_{0}$ in D with coefficients $a_{m}, a_{m-1}, \ldots, a_{1}, a_{0}$ in $k(x)$ as an operator on $k(x)$: elements of $k(x)$ act by multiplication and D^{k} acts as the $k^{\text {th }}$-derivative. Let R be the ring of all such polynomial operators on $k(x)$. It is associative and has an identity but is not commutative.

[^0](a) Show that R has no zero divisors: that is, if $r s=0$ with r, s in R, then either $r=0$ or $s=0$.
(b) Show that every left ideal of R is generated by a single element.
(c) Show that every right ideal of R is generated by a single element.
(d) Show that every two-sided ideal of R has an element which generates it both as a left and as a right ideal.
(e) Let I be a two-sided ideal and a an element of R such that $R a=$ $I=a R$. Show that a commutes with every element of $k(x)$. Show further that a belongs to $k(x)$ so that either $I=0$ or $I=R$. (Hint: Given b in $k(x)$ write $b a=a c$. Prove that c belongs to $k(x)$.)
(f) Show that R does not contain minimal non-zero one-sided (left or right) ideals.
(a) If $a_{m} D^{m}$ is the leading term of a polynomial and $b_{n} D^{n}$ the leading term of another, then $a_{m} b_{n} D^{m+n}$ is the leading term of the product the Liebniz rule not withstanding.
(b) Choose a polynomial of least degree in the ideal. We may take it to be monic by multiplying on the left by a suitable element of $k(x)$. Any polynomial of degree that is not less this polynomial can be divided (on the left) just like in the usual case. The remainder is a polynomial of lesser degree than the divider and belongs to the ideal. It must therefore be 0 .
(c) Similar to item 6b. We can also divide "on the right" a polynomial of higher degree by a polynomial of lower degree.
(d) Let I be a 2 -sided ideal. The two items above imply we can find a and b such that $I=R a$ and $I=b R$. Write $a=b u$ and $b=v a$ so that $a=v a u$. Since $a u$ belongs to I, there exists u^{\prime} such that $a u=u^{\prime} a$. We thus have $a=v u^{\prime} a$. Cancelling a (see the first item) we get $1=v u^{\prime}$. Thus v is a unit. Substituting $R v$ for R in $I=R a$, we get $I=R v a=R b$.
(e) Continuing from where the hint left off, since the degrees on both sides of $b a=a c$ are equal, we conclude that c belongs to $k(x)$. Comparison of highest degree terms gives $b=c$. If a has degree $m>1$, taking b in $k(x)$ and comparing the coefficient of D^{m-1} in
$b a=a b$ gives that $D b=0$, a contradiction. Thus a belongs to $k(x)$.
(f) If we multiply a generator of a non-zero one-sided ideal by a polynomial of positive degree we get a generator of a strictly smaller non-zero ideal.

[^0]: ${ }^{1}$ A rational function is a quotient $p(x) / q(x)$ of polynomials $p(x)$ and $q(x)$ having coefficients in the field k with $q(x) \neq 0$.

