THE CARTAN MATRIX OF A CENTRALISER ALGEBRA

AMRITANSHU PRASAD

Abstract

We calculate the Cartan matrix of the algebra of the ring of matrices that commute with a given square matrix.

1. The problem

Let K be a perfect field and T be an $n \times n$-matrix with entries in K. Let A denote the K-algebra of all matrices B such that $A B=B A$. Let P_{1}, \ldots, P_{l} be a complete set of representatives for the isomorphism classes of principal indecomposable A-modules. Each simple A-module is then of the form $D_{i}=P_{i} / \operatorname{Rad} P_{i}[\mathrm{CR} 62$, Chapter VIII]. Given a finite dimensional A-module M and a simple A-module D, let $[M: D]$ denote the number of composition factors in a composition series for M that are isomorphic to D. The Cartan matrix of A is the $l \times l$ matrix $C=\left(c_{i j}\right)$ defined by

$$
c_{i j}=\left[P_{i}: D_{j}\right]
$$

The goal of this article is to compute the matrix C. For this purpose T can always be replaced by a matrix similar to it.

2. Reduction to the primary case

We will use $T_{1} \oplus \cdots \oplus T_{r}$ to denote the block diagonal matrix whose diagonal blocks are T_{1}, \ldots, T_{r}. Then T is similar to a matrix of the form

$$
\bigoplus_{p} T_{p},
$$

where p ranges over a finite set of irreducible polynomials with coefficients in K and T_{p} is a matrix whose characteristic polynomial is a power of p. Moreover, A has a decomposition into two-sided ideals

$$
A=\bigoplus A_{p}
$$

where A_{p} is the ring of matrices that commute with T_{p}.
Date: 2006-2007.

Moreover, for each p, there exists a unique partition

$$
\lambda=\left(\begin{array}{cccc}
\lambda_{1}, \cdots, \lambda_{1} \\
m_{1} \text { terms }
\end{array}, \begin{array}{c}
\lambda_{2}, \cdots, \lambda_{2} \\
m_{2} \text { terms }
\end{array}, \cdots, \begin{array}{l}
\lambda_{l}, \cdots, \lambda_{l} \\
m_{l} \text { terms }
\end{array}\right)
$$

with $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{l}, m_{1}, \ldots, m_{l}$ positive integers, which we will abbreviate as

$$
\lambda=\left(\lambda_{1}^{m_{1}}, \ldots, \lambda_{l}^{m_{l}}\right),
$$

such that

$$
A_{p} \cong \operatorname{End}_{E[t]} E[t] /\left(t^{\lambda_{1}}\right) \oplus m^{m_{1}} \oplus \cdots \oplus E[t] /\left(t^{\lambda_{l}}\right)^{\oplus m_{l}},
$$

where E is the algebraic field extension $K[t] / p(t)$ of K. The ring A_{p} depends on T_{p} only through E and λ.

We shall use the notation

$$
E^{\lambda}=E[t] /\left(t^{\lambda_{1}}\right)^{\oplus m_{1}} \oplus \cdots \oplus E[t] /\left(t^{\lambda_{l}}\right)^{\oplus m_{l}}
$$

which is an $E[t]$-module, and

$$
M_{\lambda}(E)=\operatorname{End}_{E[t]}\left(E^{\lambda}\right) .
$$

In particular $M_{1^{m}}(E)$ denotes the ring of $m \times m$ matrices over E.

3. A block matrix representation of $M_{\lambda}(E)$

An element $\mathbf{x} \in E^{\lambda}$ can be represented as a vector with entries $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right)$, where $\mathbf{x}_{j} \in E[t]\left(t^{\lambda_{j}}\right)^{\oplus m_{j}}$. Accordingly, if such a vector is represented as a column, an element $a \in M_{\lambda}(E)$ can likewise be represented by a matrix $a=\left(a_{i j}\right)$, where

$$
a_{i j} \in \operatorname{Hom}_{E[t]}\left(E[t] /\left(t^{\lambda_{j}}\right)^{\oplus m_{i}}, E[t] /\left(t^{\lambda_{j}}\right)^{\oplus m_{i}}\right) .
$$

Given $a=\left(a_{i j}\right)$ and $b=\left(b_{i j}\right)$ in $M_{\lambda}(E)$, the composition $a b$ has (i, j) entry

$$
a_{i 1} b 1 j+\cdots+a_{i l} b_{l j} .
$$

Each of the above summands $a_{i k} b_{k j}$ is obtained by composition:

$$
E[t] /\left(t^{\lambda_{j}}\right)^{\oplus m_{j}} \xrightarrow{b_{k j}} E[t] /\left(t^{\lambda_{k}}\right)^{\oplus m_{k}} \xrightarrow{a_{i k}} E[t] /\left(t^{\lambda_{i}}\right)^{\oplus m_{i}}
$$

4. Computation of the radical

Consider $E^{\lambda_{j}^{m_{j}}}=E[t] /\left(t^{\lambda_{j}}\right)^{\oplus m_{j}}$. Reduction modulo t gives a surjection $E^{\lambda_{j}^{m_{j}}} \rightarrow E^{m_{j}}$. There is a corresponding reduction modulo t for $M_{\lambda_{j}^{m_{j}}}(E)=\operatorname{End}_{E[t]}\left(E^{\lambda_{j}^{m_{j}}}\right):$

$$
M_{\lambda_{j}^{m_{j}}}(E) \rightarrow M_{m_{j}}(E)
$$

The radical of $M_{\lambda_{j} m_{j}}(E)$ is the kernel of the above surjection, which we will denote by $R_{\lambda_{j} m_{j}}(E)$. It consists of those endomorphisms of $E^{\lambda_{j}^{m_{j}}}$ whose image lies in $t E^{\lambda_{j}^{m_{j}}}$. This is becaus $R_{\lambda_{j}^{m_{j}}}(E)$ is a nilpotent two-sided ideal and the quotient $M_{m_{j}}(E)$ is semisimple. Let

$$
R_{\lambda}(E)=\left\{\left(a_{i j}\right) \in M_{\lambda}(E) \mid a_{j j} \in R_{\lambda_{j} m_{j}}(E) \text { for } j=1, \ldots, l\right\}
$$

We claim that $R_{\lambda}(E)$ is the radical of $M_{\lambda}(E)$. If $a \in R_{\lambda}(E)$ and $b \in M_{\lambda}(E)$, then the entries in the matrix of $a b$ are sums of terms of the form $a_{j k} b_{k j}$. If $k>j$ then the image of $b_{k j}$ is contained in $t E^{\lambda_{k}^{m_{k}}}$. If $k<j$ then the image of $a_{j k}$ is contained in $t E^{\lambda_{j}^{m_{j}}}$. If $k=j$, then since $a \in R_{\lambda}(E)$, the image of $a_{j j}$ is contained iin $t E^{\lambda_{j}^{m}}$. Consequently, in all of these cases, the image of $a_{j k} b_{k j}$ is contained in $t E^{\lambda_{j}^{m_{j}}}$. Therefore, $R_{\lambda}(E)$ is a right ideal. A similar argument shows that $R_{\lambda}(E)$ is a two-sided ideal. The quotient $\frac{M_{\lambda}(E)}{R_{\lambda}(E)}$ is a semisimple ring:

$$
\frac{M_{\lambda}(E)}{R_{\lambda}(E)}=M_{1^{m_{1}}}(E) \oplus \cdots \oplus M_{1^{m_{l}}}(E) .
$$

It therefore remains only to show that $R_{\lambda}(E)$ is nilpotent. For this, suppose that a and b are both in $R_{\lambda}(E)$. Then the matrix entries of $a b$ are sums of terms of the form $a_{i k} b_{k j}$. If $i \geq j$, then the sort of reasoning that was used earlier shows that $a_{i k} b_{k j}$ has image contained in $t E^{\lambda_{i}^{m_{i}}}$. An inductive argument then shows that when $i \geq j$, then every product of r elements in $R_{\lambda}(M)$ has (i, j) th entry whose image lies in $t^{r-1} E^{\lambda_{i}^{m_{i}}}$. Therefore, the elements of $R_{\lambda}(M)^{\lambda_{l}}$ have all matrix entries below or on the diagonal zero. A product of l such elements is always zero. Therefore $R_{\lambda}(E)^{\lambda_{l} l}=0$.

5. Principal indecomposable and simple modules

It follows from Section 4 that there are l isomorphism classes of simple $M_{\lambda}(E)$-modules. These are represented by D_{1}, \ldots, D_{l} where D_{j}, as an E-vector space is isomorphic to $E^{m_{j}}$, and $a \in M_{\lambda}(E)$ acts on it by the image of $a_{j j}$ in $M_{1^{m_{j}}}(E)$. For each $1 \leq i \leq l$ and $1 \leq r \leq m_{i}$, let $e_{i r}$ denote the element of $M_{\lambda}(R)$ whose matrix has all entries 0 , except the (i, i) th entry, which as an element of $M_{\lambda_{i}^{m_{i}}}(E)$ has matrix with all entries zero and the (r, r) th entry equal to 1 . Then

$$
1=\sum_{i=1}^{l} \sum_{r=1}^{m_{i}} e_{i r},
$$

and that the $e_{i r}$'s are pairwise orthogonal idempotents. There is a matrix unit in $M_{\lambda_{i}^{m i}}$ which takes $e_{i r}$ to $e_{i r^{\prime}}$ for any $1 \leq r, r^{\prime} \leq m_{i}$. Therefore, all the modules $M_{\lambda}(E) e_{i r}$ are isomorphic for a fixed value of i. Let $P_{i}=M_{\lambda}(E) e_{i 1}$ for $i=1, \ldots, l$. That $e_{i 1}$ is a primitive idempotent follows from the corresponding fact for $M_{\lambda_{i} m_{i}}$. Since the $P_{i} /\left(R_{\lambda}(E) \cap P_{i}\right)$'s are pairwise non-isomorphic, so are the P_{i} 's. It follows that P_{1}, \ldots, P_{l} is a complete set of representatives for the isomorphism classes of principal indecomposable $M_{\lambda}(E)$-modules.

6. The Cartan matrix

It now remains to calculate $\left[P_{i}: D_{j}\right]$ for all $1 \leq i, j \leq l$. By [CR62, Theorem 54.16],

$$
\left[P_{i}: D_{j}\right]=\operatorname{dim}_{E} e_{j 1} M_{\lambda}(E) e_{i 1} .
$$

For any $a \in M_{\lambda}(E)$, the (k, l) th entry of $e_{j 1} a e_{i 1}$ is zero unless $j=k$ and $l=i$. The (j, i) th entry is $\left(a_{j i}\right)_{11}$, the (1,1)th entry of $a_{j i}$ when $a_{j i}$ is thought of as a matrix whose (j, i) th entry is in $\operatorname{Hom}_{E[t]}\left(E[t] /\left(t^{\lambda_{i}}\right), E[t] /\left(t^{\lambda_{j}}\right)\right)$. Now $\operatorname{dim}_{E} \operatorname{Hom}_{E[t]}\left(E[t] /\left(t^{\lambda_{i}}\right), E[t] /\left(t^{\lambda_{j}}\right)\right)=\min \left\{\lambda_{i}, \lambda_{j}\right\}$. Therefore the Cartan matrix of $M_{\lambda}(E)$ is given by

$$
c_{i j}=\min \left\{\lambda_{i}, \lambda_{j}\right\}, \text { for all } 1 \leq i, j \leq l .
$$

It follows that $M_{\lambda}(E)$ has a single block.

References

[CR62] Charles W. Curtis and Irving Reiner. Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley \& Sons, New York-London, 1962.

The Institute of Mathematical Sciences, Chennai.
URL: http://www.imsc.res.in/~amri

