
Programming Tutorial 2 Chennai

Sage Advanced Programming Tutorial
This Sage worksheet is for the course in Sage and programming at the Institute of Mathematical Sciences in
Chennai, circling around Sage Days 60.  It is based on tutorials developed for the MAA PREP Workshop
"Sage: Using Open-Source Mathematics Software with Undergraduates" (funding provided by NSF DUE
0817071).

 
       

There are far more useful programming tips and techniques available than we could cover in weeks.
Nonetheless, certain structures and concerns are particularly important as you start to do more serious
mathematics with Sage.  Hopefully some of the homework from last time convinced you of the need for
more tools!

This tutorial aims to cover some more slightly more advanced aspects of lists and functions, as well as some
new datatypes and other things to be aware of.  Think of it as a potpourri of possibly useful ideas, not a
comprehensive list.

Structure and Flow
We saw the "block" structure of Python in the last tutorial, with the all-important indentation.

G = groups.permutation.Quaternion()
L = []
for g in G.subgroups():
    L.append(g) 
       
L 

       

[Permutation Group with generators [()], Permutation Group with
generators [(1,3)(2,4)(5,7)(6,8)], Permutation Group with generators
[(1,3)(2,4)(5,7)(6,8), (1,5,3,7)(2,8,4,6)], Permutation Group with
generators [(1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8)], Permutation
Group with generators [(1,3)(2,4)(5,7)(6,8), (1,6,3,8)(2,5,4,7)],
Permutation Group with generators [(1,2,3,4)(5,6,7,8),
(1,3)(2,4)(5,7)(6,8), (1,5,3,7)(2,8,4,6)]]

This created a list of all subgroups of the quaternion group.

What happens if I want to create something more interesting, though? For instance, I might want a list of a
couple random elements of each subgroup of a particular group (so, possibly duplicating some elements).

http://www.sagemath.org/
http://www.imsc.res.in/
http://wiki.sagemath.org/days60


L = [] # remember to reset L!
for g in G.subgroups():
    for i in range(2):
        L.append( g.random_element() ) 
       
L 

       
[(), (), (1,3)(2,4)(5,7)(6,8), (), (1,7,3,5)(2,6,4,8), (), (),
(1,2,3,4)(5,6,7,8), (1,6,3,8)(2,5,4,7), (1,6,3,8)(2,5,4,7),
(1,8,3,6)(2,7,4,5), (1,6,3,8)(2,5,4,7)]

Notice the nested indentation and colons.  Any text which comes after a "#" symbol (technically known as
octothorpe) is a comment, ignored completely by Sage.

 

It can actually be harder to create a list of lists.  I recommend judicious combinations of list comprehensions
and loops.  Look at the following examples listing various elements and other information about subgroups
of this group.

L = []
for g in G.subgroups():
    L.append(g.list())

L 

       

[[()], [(), (1,3)(2,4)(5,7)(6,8)], [(), (1,3)(2,4)(5,7)(6,8),
(1,5,3,7)(2,8,4,6), (1,7,3,5)(2,6,4,8)], [(), (1,2,3,4)(5,6,7,8),
(1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6)], [(),
(1,3)(2,4)(5,7)(6,8), (1,6,3,8)(2,5,4,7), (1,8,3,6)(2,7,4,5)], [(),
(1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6),
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), (1,7,3,5)(2,6,4,8),
(1,8,3,6)(2,7,4,5)]]

L = []
for g in G.subgroups():
    L.append([ elt.order() for elt in g ])

L 

       [[1], [1, 2], [1, 2, 4, 4], [1, 4, 2, 4], [1, 2, 4, 4], [1, 4, 2, 4,4, 4, 4, 4]]

True or False

Talking about block structure also gives the opportunity to introduce conditional statements and
comparisons.  For instance, how might we extract only elements of a group of a certain order?   The
quaternion group doesn't have any elements of order eight, so let's try with four.

for g in G: # the elements of the group



    if g.order() == 4:
        print g 

       

(1,2,3,4)(5,6,7,8)
(1,4,3,2)(5,8,7,6)
(1,5,3,7)(2,8,4,6)
(1,6,3,8)(2,5,4,7)
(1,7,3,5)(2,6,4,8)
(1,8,3,6)(2,7,4,5)

What just happened?  Mathematically, six of the elements had order 4, and those are the ones printed by the
loop.  But what happened in terms of the computer?

Here we have not just a nested structure, but one where the second part is asking "if" a certain statement is
true or not.

If the statement after "if" is evaluated by Sage to be "True" (which means Sage can prove it is true), we
do the next level of nested indentation.
Otherwise, we move on.

It is very important to note that we used "g.order() == 4", and not a single equals sign.  A single equals just
means "give something this name"; a double equals means "see if these things are actually equal.  It is a good
idea, if you need to use comparisons, to familiarize yourself with how Python compares elements.  In a
longer course on programming, one would spend significant time with Boolean operators and comparisons.

Here is another example that shows Sage does the mathematically sensible thing as often as possible.  The
fourth power of  is not the number zero, but the zero matrix, but this is a well-understood (non-)abuse of
notation.

B = matrix([[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,0]])
for i in range(5): # all integers from 0 to 4, remember
    if B^i == 0: # We ask if the power is the zero matrix
        print i 
       4

Even more blocks

There are lots more flow control tools that you can use.  Hhere is an example that uses "if/else" and
"try/except", two two-parter blocks that are very useful (as this example illustrates).  In your homework you
are asked to analyze this.

for i in range(10):
    try:
        F = factor(i)
        if len(F)==1:
            print "Just one factor for {}".format(i)
        else:
            print "Too bad, {} is composite".format(i)
    except ArithmeticError:
        print "You didn't try to factor zero, did you?" 

B

https://docs.python.org/2/library/stdtypes.html#comparisons


       

You didn't try to factor zero, did you?
Too bad, 1 is composite
Just one factor for 2
Just one factor for 3
Just one factor for 4
Just one factor for 5
Too bad, 6 is composite
Just one factor for 7
Just one factor for 8
Just one factor for 9

Lists again (and their friends)
It's time to return to lists.  Let's start by reviewing some things that were implied by the homework.

a=[1,2,3] # list
a 
       [1, 2, 3]
a[-1] 
       3

We can count backwards from the end.  If we did "a[-2]" that would give us the second-to-last element (if
one exists), and so forth.

More surprising, we can change elements of lists with this notation.

a[1] = -1
a 
       [1, -1, 3]

Unlike in some other programming languages, you can't extend lists this way.

a[3] = 2 

       
Traceback (click to the left of this block for traceback)
...
IndexError: list assignment index out of range

Slicing lists

But that is just the tip.  Python has a powerful facility for getting (and setting) multiple elements of lists in
various ways, or "slicing" a list. 

a=range(10)
a 
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a[1:4] 



       [1, 2, 3]

This notation essentially is short for "a[i] for 1 <= i < 4".  So I can get a sublist very easily with this.

If the beginning value is not specified, it defaults to the first item.  If the ending value is not specified, the
slice goes to the end of the list.

a[:4] # everything up to, but not including element number 4 
       [0, 1, 2, 3]
a[4:] 
       [4, 5, 6, 7, 8, 9]

We can assign things to a list this way too.

a[1:4] = [2,3,4] 
       
a 
       [0, 2, 3, 4, 4, 5, 6, 7, 8, 9]

However, without '=', these are copies of the list.  In fact, it's a convenient way to copy a list!

a = range(10) 
       
a[:] # a copy of the entire list 
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

There are many variants on this syntax.  See if you can figure out how to describe the behavior in the next
few cells (this is your first homework problem).  Think about what default behavior must be, among other
things.  The only way to internalize this is with lots of practice.

a[1:6:2] 
       [1, 3, 5]
a[::2] 
       [0, 2, 4, 6, 8]
a[::-1] 
       [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
a[-3:] 
       [7, 8, 9]
a[3:-2:2] 
       [3, 5, 7]

Matrices slice too



Sage has adopted this slicing notation for matrices and vectors to allow powerful ways to get submatrices,
reorder rows/columns, etc.  Addtionally, you can specify an explicit list of columns/rows for an index to
construct submatrices.  See the documentation.

m=matrix(4,range(16))
m 

       

[ 0  1  2  3]
[ 4  5  6  7]
[ 8  9 10 11]
[12 13 14 15]

m[::2,[0,3]] # GET every other row, columns 0 and 3 

       [ 0  3][ 8 11]
m[::2,[0,3]] = matrix([[-1,2],[0,0]]) # SET every other row, columns 0 
and 3 
       
m  # check it worked 

       

[-1  1  2  2]
[ 4  5  6  7]
[ 0  9 10  0]
[12 13 14 15]

m[::-1,:] # reverse the order of the rows 

       

[12 13 14 15]
[ 0  9 10  0]
[ 4  5  6  7]
[-1  1  2  2]

m[[-1,0],[1,2]] # GET the last row, then first, with columns 1 and 2 

       [13 14][ 1  2]

When slicing goes just one way

Recall the numerical integral question from homework.  How do we get just the answer?

ANS = numerical_integral(x^3,0,1) 
       
ANS; ANS[0] 

       (0.25, 2.7755575615628914e-15)0.25

You might think we could now change "ANS" if it was convenient - after all, it's not the numerical integral,
just a sequence of numbers.  But you would be wrong.

ANS[0] = 4 

http://sagemath.org/doc/reference/matrices/sage/matrix/docs.html#indexing


       
Traceback (click to the left of this block for traceback)
...
TypeError: 'tuple' object does not support item assignment

Sometimes, you want something like a list, but which is not in danger of being accidentally modified.  In
cases like this, you want a tuple.

b = (1,2,3) # tuple
b 
       (1, 2, 3)

We make tuples using commas without brackets.  Typically, parentheses are also included for clarify, and I
encourage this use.

Now let's try to change our tuple.

b[1] = -1 # gives error 

       
Traceback (click to the left of this block for traceback)
...
TypeError: 'tuple' object does not support item assignment

There is a lot you might want to do with tuples.  The most common thing, though, is to use them to return
more than one thing from a function, and then to assign those outputs to variables.  Like below.

(answer, error_bound) = numerical_integral(x^3,0,1)
print answer
print error_bound 

       0.252.77555756156e-15

Inherent in that is the use of tuples.  For right now, the most important thing is to be aware that when you see
an object like a list, but with parentheses, you can't change it - and that's a good thing.

Even more ways to construct lists
Remember the list comprehension "set-builder notation" way to make lists?  This can include filtering tests
as well.

[g for g in G if g.order() == 4] 

       [(1,2,3,4)(5,6,7,8), (1,4,3,2)(5,8,7,6), (1,5,3,7)(2,8,4,6),(1,6,3,8)(2,5,4,7), (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5)]

The construction simply adds in the comparison statement.  This can get quite complex.  Treating these
constructs as set builder notation is probably best.

[i+j for i in [1..10] for j in [i..10] if (i+j).is_prime() and i*j != 
10] 

http://www.greenteapress.com/thinkpython/html/thinkpython013.html


       [2, 3, 5, 7, 5, 11, 7, 11, 13, 11, 13, 11, 13, 13, 17, 17, 19]

A list can also be constructed "lazily" using a generator.  A generator generates its values as it is asked for
them, not before.  To make a generator, you use list comprehension notation, but with round parentheses.

(i for i in range(3)) 
       <generator object <genexpr> at 0x10eec71e0>

To actually enumerate all the values, you can use the "list( )" function.

list(i for i in range(3)) 
       [0, 1, 2]

Instead of explicitly listing the values, you can do some other operation, like summing them.

sum(i for i in (1..10) if i.is_prime()) 
       17

This is not so important for basic Sage use, but for constructing more efficient code (so that you aren't
wasting memory and time creating a whole list of what you want until you really need it) it is crucial

Sage has a huge number of generators that give interesting things.  For example, here we make all graphs on
5 vertices.

graphs(5) 
       <generator object __call__ at 0x10eec7280>

Let's time this and compare it with timing creating all of them.

%time
G = graphs(5) 
       CPU time: 0.00 s,  Wall time: 0.00 s
%time
len(list(G)) 

       34CPU time: 0.06 s,  Wall time: 0.14 s

Generators are subtle beasts, though, so be careful:

G.next() 

       
Traceback (click to the left of this block for traceback)
...
StopIteration

show(graphs(4)) 

{i + j|i, j ∈ Z, 1 ≤ i, j ≤ 10, i + j ∈ P, ij ≠ 10}



       

Dictionaries
A fairly different, but crucial, datatype is a dictionary.  What is a dictionary?

To show this, let's think of a common situation.  Suppose you want to define a matrix that encodes some
information about a combinatorial object.  But ... nearly all the entries are zero.  Do you really want to type
in all those zeros?

matrix([[0,0,0,0],[0,1,0,0],[0,0,2,0],[0,0,0,-1]]) 

       

[ 0  0  0  0]
[ 0  1  0  0]
[ 0  0  2  0]
[ 0  0  0 -1]

Try this instead!



nonzero = { (1,1):1, (2,2):2, (3,3):-1 }
matrix(nonzero) 

       

[ 0  0  0  0]
[ 0  1  0  0]
[ 0  0  2  0]
[ 0  0  0 -1]

Remember, the "(1,1)" spot is the second column and second row.  What did I do to create this?

I placed things inside curly braces.
Each (nonzero) element of the matrix was separated by commas, just like in lists and tuples.
I separated the entry location and the entry value with a colon each time.

Such an object is called a dictionary.  This can be thought of as a mathematical mapping from "keys" to
"values".  (Here, the keys were the location and the values were the ... values.)  There are a couple technical
points you won't understand yet if you are new to them, but which the Python police require I mention:

The order is not important and not guaranteed to hold; only the relations matter.
The keys (the first element of a colon-pair) must be "hashable".  So you can't have a list as a key.

{[1,2]:3} 

       
Traceback (click to the left of this block for traceback)
...
TypeError: unhashable type: 'list'

{(1,2):3} 
       {(1, 2): 3}

We have to be careful; you can't add to the values easily.

{1:[2],1:[3]} 
       {1: [3]}

But in other ways, dictionaries are sort of like lists.

O = sage.plot.plot.plot.options; O 

       

{'fillalpha': 0.5, 'detect_poles': False, 'plot_points': 200,
'thickness': 1, 'alpha': 1, 'adaptive_tolerance': 0.01, 'fillcolor':
'automatic', 'adaptive_recursion': 5, 'aspect_ratio': 'automatic',
'exclude': None, 'legend_label': None, 'rgbcolor': (0, 0, 1),
'fill': False}

O['linestyle'] = '--' 
       
plot(x,(x,0,1)) 



       

We can also use a generator to create a dictionary.  This is very powerful for creating otherwise-tedious and
error-prone mathematical objects.

str = 'abc'
elts = list(str)
LS1 = Permutations(elts).list()
LS2 = LS1[:]
d = dict( (''.join(list(ls1)),[''.join(list(ls2)) for ls2 in LS2 if 
(ls1[0]==ls2[0] or ls1[1]==ls2[1]) and ls1 != ls2 ]) for ls1 in LS1 )
G = Graph(d)
P = plot(G,figsize=5,vertex_size=1000,vertex_colors='white')
P.show()
Gp = G.automorphism_group()
print Gp.order() 



       

12

If I change to 'abcd' it now automatically creates the "right" graph for that case.

Two more topics
We'll end with two things that are worth being aware of where things aren't quite what they seem.

Lambda Functions

Sometimes you don't want to go to all the trouble of making a function (for instance, because it makes things
more complex), but you nonetheless need a function.  Lambda functions are short one-line functions similar
to "def" functions which are very helpful in such situations.  

Technical note: lambda functions do not create a new local scope, while def functions do.

The syntax is very short.  The input variables are before the colon, the output is after it.

f = lambda x,y: x+y 
       
f(1,2) 
       3

Lest you think this is completely pointless (as the previous example was), here are some real-life examples
of how they are used.

First, suppose you have a list of points like this one.



points=[(i,sin(RR(i))) for i in range(10)]
points 

       

[(0, 0.000000000000000), (1, 0.841470984807897), (2,
0.909297426825682), (3, 0.141120008059867), (4, -0.756802495307928),
(5, -0.958924274663138), (6, -0.279415498198926), (7,
0.656986598718789), (8, 0.989358246623382), (9, 0.412118485241757)]

Oops, but I want to sort them by the dependent variable.  Now what?

No problem, just use a lambda function with the Python builtin "sorted".

sorted(points, key=lambda p: p[1]) 

       

[(5, -0.958924274663138), (4, -0.756802495307928), (6,
-0.279415498198926), (0, 0.000000000000000), (3, 0.141120008059867),
(9, 0.412118485241757), (7, 0.656986598718789), (1,
0.841470984807897), (2, 0.909297426825682), (8, 0.989358246623382)]

The function "sorted" takes a function to sort by, and this function selects the second ("oneth") element of
each coordinate pair.

To do this without a lambda is somewhat more tedious, and creates an unnecessary function that you might
then accidentally use.

def find_second_element(p):
    return p[1]
sorted(points, key=find_second_element) 

       

[(5, -0.958924274663138), (4, -0.756802495307928), (6,
-0.279415498198926), (0, 0.000000000000000), (3, 0.141120008059867),
(9, 0.412118485241757), (7, 0.656986598718789), (1,
0.841470984807897), (2, 0.909297426825682), (8, 0.989358246623382)]

We can easily (well, at least with only one line of code) construct and display a Paley graph using this as
well.  Parse this carefully!

pos = dict([i,[cos(2*pi*i/13).n(),sin(2*pi*i/13).n()]] for i in 
range(13))
g = Graph([GF(13), lambda i,j: i!=j and (i-j).is_square()], pos=pos) 
       
show(g) 

http://mathworld.wolfram.com/PaleyGraph.html


       

Annoying corollary

If for some reason you want to use "lambda" as a variable, you'll have to do this annoying thing.

var('lambda_')
lambda_^2-1 
       lambda_^2 - 1

This seems bad, but in this one case we have hacked Sage so that showing the expression still shows the
Greek letter.

show(lambda_^2-1) 

       

Kinds of numbers
Finally, although Sage tries to anticipate what you want, sometimes it does matter how you define a given
element in Sage.

We saw this above with matrices over the rationals versus integers, for instance.  
Here's an example with straight-up numbers.

a = 2

− 1λ2



b = 2/1
c = 2.0
d = 2 + 0*I
e = 2.0 + 0.0*I 
       

We will not go in great depth about this, either, but it is worth knowing about.  Notice that each of these
types of numbers has or does not have , decimal points, or division.

print parent(a)
print parent(b)
print parent(c)
print parent(d)
print parent(e) 

       

Integer Ring
Rational Field
Real Field with 53 bits of precision
Symbolic Ring
Symbolic Ring

This is particularly important in the following case.  These two things are different types, but are still the
same, right?

a = 1/5
b = 0.2 
       
a==b 
       True
b.exact_rational() 
       3602879701896397/18014398509481984

What the ... ?

This is because Sage "real numbers" are really approximations up to a certain size in machine terms.  And
the computer only knows binary, so all denominators must be powers of two... even if they are really big
ones.

2^54 
       18014398509481984

We can get more precision, of course.  But understanding this difference can be crucial when subtle bugs
appear because of the difference between rationals or symbolic numbers and "floating-point" numbers.

R = RealField(1000)
b = R(b)
print b

I = −1−−−√



print b.exact_rational()
print b.exact_rational().n(prec=1010) 

       

0.200000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000
85720688574901385675874003924800144844912384936442688595500031069628\
08408999488979945587030525566865020757383340425174601497162285538512\
34878766205975885984314765421985938478833685968404989691350236334572\
24371799868655530139190140473324351568616503316569571821492337341283\
43865322099509469764534455501/42860344287450692837937001962400072422\
45619246822134429775001553481404204499744489972793515262783432510378\
69167021258730074858114276925617439383102987942992157382710992969239\
41684298420249484567511816728612185899934327765069595070236662175784\
308251658284785910746168670641719326610497547348822672277504
0.200000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000005

Homework
1. Experiment with the list slicing notation, especially the one with two colons.  Explain fully what the

notation "ls[a:b:c]" means in terms of skips, starts, etc.
2. Do a wide variety of matrix slicing things from documentation.  Can you replicate the output of "m[[-

1,0],[1,2]]" above with some method of "m"?  (Hint: use tab-completion.)  Discuss the differences
between slicing and this method.

3. Write a brief program that takes some square matrix  (of your choice) and checks whether  is the
identity matrix.

4. Make this program into both a 'regular' function and a lambda function and check they work.
5. Write a function which, given numerical input, tells whether the square of the input is between 3 and 4.
6. Use filtering to create a list of all primes less than 100 congruent to 1 modulo 4.  Use any method you

like to create a list of all primes less than 100 which may be written as  for some integers 
.  Discuss.

7. Do Project Euler problem 45.
8. Create your favorite graph and your favorite matrix (well, your favorite nontrivial ones...) using

dictionaries.  
9. Completely explain what I have done in the two examples creating graphs using dictionaries and

lambdas.  (The "join" business is explained here and here.)
10. Find out about all the things going on in the example about factoring above.  Here are a couple

resources about the formatting, but I'll leave you to find out about "if/else" and "try/except".  How
many new ideas are in it?  Where did you look for help?  Notice that it's easier to follow code than to
come up with syntactically correct code - which means you can review other mathematicians' work
without having to duplicate it.

11. Do Project Euler problem 27.  You will have to use everything here and probably some functions
about primality!

A A2

p = +a2 b2

a, b

http://projecteuler.net/problem=45
http://www.decalage.info/en/python/print_list
http://stackoverflow.com/a/1876206/782821
http://openbookproject.net/thinkcs/python/english3e/strings.html#the-string-format-method
https://www.youtube.com/watch?v=mmJPx6YsOMI
http://projecteuler.net/problem=27


12. For a real challenge, do the exercises from this section of Godsil and Beezer's book on algebraic graph
theory.

13. Figure out how to calculate  to one hundred bits of precision.  How about one thousand?  One
lakh?

14. Read about the IEEE floating-point standard.  Try to create a Sage function which takes a decimal and
converts it to this format (mantissa, exponent, and so forth).  Then check your work.

15. Make a Sage worksheet or script which shows how to calculate something you care about
mathematically (this doesn't have to be something complicated), and which is well enough
documented you could teach someone else with it.

 
       

sin(1)

http://linear.ups.edu/eagts/section-26.html
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.sagemath.org/doc/prep/Quickstarts/NumAnalysis.html#converting-to-floating-point-binary-ieee-format

