1If n is an integer having binary expansion n = ϵ+2k1+2k2++2kr,ϵ ∈{0,1},0 < k1 < k2 < < kr, the number of chiral partitions of n is 2k2++kr2k1-1 +∑v=1k1-12(v+1)(k1-2)-+ϵ2; see Ayyer, Prasad, and Spallone, JCTA, vol. 150, 2017.