REPRESENTATION THEORY

ASSIGNMENT DUE ON OCTOBER 3, 2011

Assume whenever you wish that K is a field of characteristic $>n$

(1) Assuming that $K_{\mu \lambda}>0$ if and only if $\mu \leq \lambda$, show that $N_{\lambda \mu} \geq 2$ if $\mu^{\prime}<\lambda$ [Hint: use the dual RSK correspondence].
(2) Express the product $m_{(1,1)} m_{(2)}$ as a linear combination of monomial symmetric functions.
(3) Let $X_{\lambda \mu}=\operatorname{trace}\left(w_{\mu}, V_{\lambda}\right)$, where w_{μ} is an element with cycle decomposition of shape μ. Show that

$$
\operatorname{det} X=\prod_{\lambda \vdash n} \prod_{i=1}^{\infty} m_{i}(\lambda)!
$$

[Hint: Compute the determinant of the matrix $P_{\lambda \mu}=\operatorname{trace}\left(w_{\mu}, X_{\lambda}\right)$ by showing that it is upper triangular and then computing its diagonal elements]
(4) For a partition λ, let $m_{i}(\lambda)$ denote the number of times i occurs in λ. Let $g_{i}(\lambda)$ denote the number of parts of λ which occur at least i times. For example, if $\lambda=(3,2,2,2,1,1)$ then $m_{2}(\lambda)=3$, whereas $g_{2}(\lambda)=2$. Show that

$$
\sum_{\lambda} m_{i}(\lambda)=\sum_{\lambda} g_{i}(\lambda) .
$$

(5) Show that the determinant of the character table of S_{n} (semisimple case) is given by

$$
\operatorname{det} X=\prod_{\lambda \vdash n} \prod_{i} \lambda_{i}
$$

the product of all the parts of all partitions of n [Hint: use the two previous problems].
(6) Let $\omega: \Lambda_{K}^{n} \rightarrow \Lambda_{K}^{n}$ be given by

$$
\omega\left(e_{\lambda}\right)=h_{\lambda} \text { for each } \lambda \vdash n
$$

Show that ω^{2} is the identity map [Hint: use transition matrices].
(7) Show that the number of permutations in S_{n} which commute with an element with cycle decomposition of shape λ is given by

$$
\left|Z_{S_{n}}\left(w_{\lambda}\right)\right|=1^{m_{1}(\lambda)} m_{1}!2^{m_{2}(\lambda)} m_{2}!\cdots
$$

(8) Let P_{n} denote the ring of polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$ which are invariant under any permutation of the variables. Define $r_{n}: \Lambda_{K} \rightarrow P_{n}$ by

$$
r_{n}(f)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)
$$

Let Par_{n} denote the set of partitions of n with at most n parts. Show that $\left\{r_{n}\left(m_{\lambda}\right) \mid \lambda \in \operatorname{Par}_{n}\right\}$ is a basis of P_{n}. Moreover, $r_{n}\left(m_{\lambda}\right)=0$ if $\lambda \notin \operatorname{Par}_{n}$.
(9) Show that $\left\{r_{n}\left(h_{\lambda}\right) \mid \lambda^{\prime} \in \operatorname{Par}_{n}\right\}$ and $\left\{r_{n}\left(e_{\lambda}\right) \mid \lambda^{\prime} \in \operatorname{Par}_{n}\right\}$ are bases of P_{n}.

