REPRESENTATION THEORY

ASSIGNMENT DUE ON AUGUST 29 2011

Assume throughout that K is an algebraically closed field

- (1) Let R be a semisimple K-algebra. Show that an R-module V is simple if and only if $\dim_K(\operatorname{End}_R V) = 1$. Does this fail when R is not semisimple or when K is not algebraically closed?
- (2) Let R be a semisimple K-algebra. An R-module V has a multiplicity-free decomposition (meaning that it is isomorphic to a sum of pairwise non-isomorphic simple modules) if and only if its endomorphism algebra $\operatorname{End}_R V$ is commutative.
- (3) If R is a finite dimensional semisimple K-algebra and V and W are finite dimensional R-modules such that

$$\dim \operatorname{End}_R V = \dim \operatorname{Hom}_R(V, W) = \dim \operatorname{End}_R W$$

then V and W are isomorphic.

(4) Let V_1, \ldots, V_r be finite dimensional vector spaces over K. In the K-algebra

$$R = \bigoplus_{i=1}^r \operatorname{End}_K V_i$$

let ϵ_i denote the identity endomorphism id_{V_i} of V_i .

- (a) Show that the centre of R (the set of all $z \in R$ such that zr = rz for all $r \in R$) is spanned by $\epsilon_1, \ldots, \epsilon_r$.
- (b) Show that the only primitive central idempotents in R are the elements $\epsilon_1, \ldots, \epsilon_r$.
- (5) Let G be a finite group and K be any field. Show that the centre of K[G] consists of the K-valued functions on G which are constant on conjugacy classes (class functions).
- (6) Suppose that K is a field and G is a finite group such that the characteristic of K does not divide |G|. Let V_1, \ldots, V_r denote a set of representatives for the isomorphism classes of simple representations of G. Show that
 - (a) r is the number of conjugacy classes in G.
 - (b) $(\dim V_1)^2 + \cdots + (\dim V_r)^2 = n$.
- (7) If V and W are K-vector spaces with bases $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_n\}$ show that if we take $V \otimes W$ to be the K-vector space with basis $v_i \otimes w_j$ $(i = 1, \ldots, n, j = 1, \ldots, m)$ and define B by $B(v_i, w_j) = v_i \otimes w_j$, then B and $V \otimes W$ satisfy the coordinate-free defintion of tensor product.
- (8) For $S \in \operatorname{End}_K V$, $T \in \operatorname{End}_K W$, show that $\operatorname{trace}(S \otimes T) = \operatorname{trace}(S) \operatorname{trace}(T)$.
- (9) Suppose (ρ, V) is a representation of G and (σ, W) is a representation of H. Then $\rho \boxtimes \sigma : (g, h) \mapsto \rho(g) \otimes \sigma(h)$ is a representation of $G \times H$ on $V \otimes W$. Show that (without using characters and their properties) if ρ and σ are simple then so is $\rho \boxtimes \sigma$. Moreover, if ρ' and σ' are simple representations

of G and H respectively, such that ρ' is not isomorphic to ρ and σ' is not isomorphic to σ , then $\rho \boxtimes \sigma$ is not isomorphic to $\rho' \boxtimes \sigma'$.

(10) If $V' = \operatorname{Hom}_K(V, K)$ is the dual vector space of V then for any vector space W the linear map $V' \otimes W \to \operatorname{Hom}_K(V,W)$ induced by the bilinear map $V' \times W \to \operatorname{Hom}_K(V, W)$ defined by

$$(\xi, w) \mapsto (v \mapsto \xi(v)w)$$

is an isomorphism of vector spaces.

- (11) Let $\beta: V' \otimes V \to \operatorname{End}_K V$ be the linear map of the previous exercise (in the case where W=V). Let τ be the linear map $V'\otimes V\to K$ induced by the bilinear map $(\xi, v) \mapsto \xi(v)$ (from $V' \times V$ to K). Recall that the trace map trace: $\operatorname{End}_k V \to K$ is defined as the sum of diagonal entries of the matrix corresponding to a linear map with respect to any basis. Show that $\operatorname{trace} \circ \beta = \tau$.
- (12) Let (ρ, V) be an irreducible representation of G. Define $\Phi: V' \otimes V \to K[G]$

$$\Phi(\xi, v) = \sum_{x \in G} \xi(\rho(x)v) 1_x$$

Then Φ is an injective intertwiner of representations of $G \times G$, where $(g,h) \in$ $G \times G$ acts on $\xi \otimes v \in V' \otimes V$ by $(\rho'(g)\xi) \otimes (\rho(g)v)$ and on $T \in \operatorname{End}_K V$ by $\rho(g)^{-1} \circ T \circ \rho(h)$.

(13) Assume that the characteristic of the lagebraically closed field K does not divide |G|. Using the explicit Wedderburn decomposition, i.e., the fact that the primitive central idempotents in K[G] are given by

$$\epsilon_i(g) = \frac{\dim V_i}{|G|} \operatorname{trace}(\rho_i(g); V_i)$$

where $(\rho_1, V_1), \dots, (\rho_r, V_r)$ are a set of representatives for the simple representations of G over K, prove the basic properties of the irreducible characters of G, namely, if $\chi_i(g) := \operatorname{trace}(\rho_i(g), V_i)$, then

- (a) χ_i, \ldots, χ_r form a basis for the centre of K[G] (the class functions). (b) $|G|^{-1} \sum_{g \in G} \chi_i(g) \chi_j(g^{-1}) = \delta_{ij}$ for all i, j (orthogonality relations).