REPRESENTATION THEORY

ASSIGNMENT DUE ON AUGUST 222011

(1) Prove that Definition 1 and Definition 2 of the group algebra result in isomorphic algebras.
(2) If R is a finite dimensional K-algebra, then every R-module has a finite dimensional invariant subspace (in particular, every simple R-module is finite dimensional).
(3) *Find a necessary and sufficient condition on a field K and a finite group G so that the subspace

$$
K[G]_{0}=\left\{f: G \rightarrow \mathbf{C}: \sum_{g \in G} f(g)=0\right\}
$$

has an invariant complement in the regular representation ($L, K[G]$).
(4) Let H be a subgroup of G. View $K[G]_{0}$ as a representation of H by restricting L to H. List all the invariant complements of this representation of H on $K[G]_{0}$.
(5) Let $n>1$ be an integer. Show that $K[\mathbf{Z} / n \mathbf{Z}]$ is isomorphic to $K[t] /\left(t^{n}-1\right)$.
(6) *Suppose that K has characteristic p. Find all the invariant subspaces for the regular representation of $K\left[Z / p^{k} \mathbf{Z}\right]$.
(7) Let V be a finite dimensional vector space over K. Then V is tautologically an $\operatorname{End}_{K} V$ module (take $\tilde{\rho}$ to be the identity map $\operatorname{End}_{K} V \rightarrow \operatorname{End}_{K} V$). Show that V is a simple $\operatorname{End}_{K} V$-module.
(8) The kernel and image of an intertwiner are invariant subspaces.
(9) Let V be as above and fix $T \in \operatorname{End}_{K} V$. Then V can be viewed as a $K[t]-$ module (here $K[t]$ denotes the algebra of polynomials in the free variable t with coefficients in K) via the K-algebra homomorphism $\tilde{\rho}: K[t] \rightarrow$ $\operatorname{End}_{K} V$ determined by $t \mapsto T$. Show that $\operatorname{End}_{K[T]} V$ consists of linear maps $T \rightarrow T$ such that $S T=T S$.
(10) Suppose that $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ are simple representations over a field K (which need not be algebraically closed). Let $T: V_{1} \rightarrow V_{2}$ be an intertwiner. Show that, if T is non-zero, then it is an isomorphism.
(11) *Let T be a self-intertwiner of a simple representation (the underlying field need not be algebraically closed). Show that the minimal polynomial of T is irreducible.
(12) If R is a K-algebra such that every module admits a finite dimensional invariant subspace and an invariant complement (for example, R could be a finite dimensional semisimple algebra), then every R-module (not necessarily finite dimensional) is a sum of simple modules (this uses Zorn's lemma).
(13) Show that every finite dimensional complex representation of a finite group admits an invariant Hermitian inner product (i.e., $\langle\rho(g) x, \rho(g) y\rangle=\langle x, y\rangle$ for all x, y and g). Use this to prove Maschke's theorem for $K=\mathbf{C}$.

