REPRESENTATION THEORY

ASSIGNMENT DUE ON AUGUST 22 2011

- (1) Prove that Definition 1 and Definition 2 of the group algebra result in isomorphic algebras.
- (2) If R is a finite dimensional K-algebra, then every R-module has a finite dimensional invariant subspace (in particular, every simple R-module is finite dimensional).
- (3) *Find a necessary and sufficient condition on a field K and a finite group G so that the subspace

$$K[G]_0 = \left\{ f: G \to \mathbf{C} : \sum_{g \in G} f(g) = 0 \right\}$$

has an invariant complement in the regular representation (L, K[G]).

- (4) Let H be a subgroup of G. View $K[G]_0$ as a representation of H by restricting L to H. List all the invariant complements of this representation of H on $K[G]_0$.
- (5) Let n > 1 be an integer. Show that $K[\mathbf{Z}/n\mathbf{Z}]$ is isomorphic to $K[t]/(t^n-1)$.
- (6) *Suppose that K has characteristic p. Find all the invariant subspaces for the regular representation of $K[Z/p^k \mathbf{Z}]$.
- (7) Let V be a finite dimensional vector space over K. Then V is tautologically an $\operatorname{End}_{K} V$ module (take $\tilde{\rho}$ to be the identity map $\operatorname{End}_{K} V \to \operatorname{End}_{K} V$). Show that V is a simple $\operatorname{End}_{K} V$ -module.
- (8) The kernel and image of an intertwiner are invariant subspaces.
- (9) Let V be as above and fix $T \in \operatorname{End}_{K} V$. Then V can be viewed as a K[t]module (here K[t] denotes the algebra of polynomials in the free variable
 t with coefficients in K) via the K-algebra homomorphism $\tilde{\rho} : K[t] \to$ End_K V determined by $t \mapsto T$. Show that $\operatorname{End}_{K[T]} V$ consists of linear
 maps $T \to T$ such that ST = TS.
- (10) Suppose that (ρ_1, V_1) and (ρ_2, V_2) are simple representations over a field K (which need not be algebraically closed). Let $T: V_1 \to V_2$ be an intertwiner. Show that, if T is non-zero, then it is an isomorphism.
- (11) *Let T be a self-intertwiner of a simple representation (the underlying field need not be algebraically closed). Show that the minimal polynomial of T is irreducible.
- (12) If R is a K-algebra such that every module admits a finite dimensional invariant subspace and an invariant complement (for example, R could be a finite dimensional semisimple algebra), then every R-module (not necessarily finite dimensional) is a sum of simple modules (this uses Zorn's lemma).
- (13) Show that every finite dimensional complex representation of a finite group admits an invariant Hermitian inner product (i.e., $\langle \rho(g)x, \rho(g)y \rangle = \langle x, y \rangle$ for all x, y and g). Use this to prove Maschke's theorem for $K = \mathbb{C}$.