Recall that U_{λ} was defined to be the unique simple which occurs in both $K[X_{\lambda}]$ and $K[X_{\lambda'}] \otimes \epsilon$. We wished to show that $U_{\lambda} \cong V_{\lambda}$.

Let $\tilde{\lambda}$ be the partition for which $U_{\lambda} \cong V_{\tilde{\lambda}}$. Since U_{λ} occurs in $K[X_{\lambda}]$, we know that $\tilde{\lambda} \leq \lambda$. By the same reasoning, $U_{\lambda} \cong V_{\tilde{\lambda}}$ does occur in $K[X_{\tilde{\lambda}}]$. By definition it occurs in $K[X_{\lambda'}]$. Therefore,

 $\dim \operatorname{Hom}_{S_n}(K[X_{\tilde{\lambda}}], K[X_{\lambda'}] \otimes \epsilon) > 0$

which implies that $N_{\tilde{\lambda}\lambda'} > 0$. By a lemma proved in class, this is equivalent to $\lambda \leq \tilde{\lambda}$. Thus $\tilde{\lambda} = \lambda$.