REPRESENTATIONS, CHARACTERS,
AND COUNTING COLORINGS UNDER SYMMETRY

AMRITANSHU PRASAD

This article is an exposition of Polya’s theory of counting colourings
of structures under symmetry. It is based on a lecture given to the
students of Amrita University on 16th September 2019 and at the in-
augural talk of the Berchmans webinar series in Mathematics on 28th
May 2020. For a deeper understanding of the topic, the reader is en-
couraged to read the book of Polya and Read [I].

1. REPRESENTATIONS, CHARACTERS, AND INVARIANT VECTORS

Let G be a finite group and V be a finite-dimensional vector space
over C. Let GL(V') denote the set of all invertible linear transforma-
tions V' — V. The set GL(V') becomes a group under composition.

Definition 1.1 (Representation). A representation of G on V is a
function p: G — GL(V) such that

p(gh) = p(g)p(h) for all g,h € G.
In other words, p is a group homomorphism.

Given a linear transformation 7' : V' — V| we write tr(7; V') for the
trace of T'on V.

Definition 1.2 (Character). The character of a representation p :
G — GL(V) is the function x, : G — C defined by:

Xo(9) = tr(p(g); V).
Exercise 1.3. Show that, for any g, h € G,

Xp(ghg™") = x,(h).
In other words, the function x, is constant on the conjugacy classes of
G. A function that is constant on conjugacy classes is known as a class

function The above exercise shows that the character of a representation
1s a class function.

Definition 1.4 (Invariant vector). Let p: G — GL(V') be a represen-
tation. A vector v € V is said to be an invariant vector if

p(g)v =wv for all g € G.
1
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The set of invariant vectors is denoted V.
Exercise 1.5. Show that V¢ is a subspace of V.
Theorem 1.6. For any representation p: G — GL(V),

) 1
dim V¢ = @ Z Xo(9)-

geG

Proof. Define a linear map P : V — V by:

P() = i1 D pla)r

geG
We claim that
(1) P? = P (in other words, P is idempotent),
(2) P(V)=VC.
Since P> = P, P(I — P) = 0. It follows that the only eigenvalues
of P are 0 and 1. Therefore the rank of P, which is the number of
non-zero characteristic roots, is the multiplicity of 1 as a characteristic

root, which is also the sum of characteristic roots, and hence the trace
of P. Thus

1
dim V¢ = rankP = trP = al Ztr(p(g); V),

geG

as required. O

2. THE ORBIT-COUNTING THEOREM

Definition 2.1 (G-set). A G-set X is a set X, together with a function
G x X — X denoted by (g,z) — ¢ -z (called the action function) such
that, if we write a(g,x) as g - x, then

(gh) - x=g-(h-x).

Given a G-set X and an element x € X, the G-orbit of z, denoted
G-z is the set of all elements that can be obtained from x by the action
of G:

G-z={g-z|geG}.
For z,y € X, say that x ~g y if y lies in the G-orbit of x. Then using
the properties of groups and Definition [2.1] it is easy to show that ~¢

is an equivalence relation on X. Its equivalence classes are the G-orbits

of X. The set of G-orbits of X is denoted G\X. For each g € G, let
X9 denote the points of X that are fixed by g, i.e.,

X'={zeX|g-z=ux}.



COUNTING COLOURINGS UNDER SYMMETRY 3

The following theorem is popularly called Burnside’s lemma, or the
Cauchy-Frobenius lemma.

Theorem 2.2 (Orbit-counting Theorem). For any G-set X,

1
G\ = g 21X

geCG

Proof. Let V' be a vector space with basis {1, | € X}. For each
g € G, define a linear map p(g) : V — V by:

P(Q)lx = lgs.

Then p is a representation of G on V in the sense of Definition [1.1]
With respect to the basis {1, | + € X}, the matrix of p(g) has entries
p(9)zy = 2,4, Wwhere § denotes the Kronecker delta function. We have:

tr(p(9), V) =Y _ p(@)ee =[{z € X | g2 =z}| = |X7.

zeX

Now let us determine V&, the subspace of G-invariant vectors in V.
Every vector v € V' is of the form:

v = E a,1,, for uniquely determined scalars «,.
zeX

We have:

p(g)v = Z aply, = Z Qg-1.1,.

zeX rzeX

Thus, if p(g)v = v, equating the coefficients of basis vectors shows that
g1, =y forallz € X. Sov € V& if the function z — «, is constant
on G-orbits in X. Hence a vector in V¢ is determined by specifying
the coefficient of 1, for one z in each G-orbit in X. In other words,
dim V¢ = |G\ X|. Now we have:

|G\ X| = dim V¢
= |—é, > tr(plg); V)

geG

-G I

geG

completing the proof of the orbit-counting theorem. 0
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3. COLOURINGS OF A SET

Suppose we are given a set C' = {¢y,..., ¢} of colours. A colouring
of a set X can be regarded as a function f : X — C. Denote the set
of all colourings of X by C(X).

Definition 3.1 (Weight of a colouring). To each colour ¢; € C, as-
sociate a variable t;. The weight of a colouring f € C(X) is defined
as:

wlf) = Bt
where )\; it the number of elements of X such that f(x) = ¢;. Abbre-
viate t)145% - - - £ to t*.

To warm up, and illustrate how these weights will be used we first
state a simple identity involving such weights:

> wl) =ttt
fed(X)

To prove this, observe that when the right hand side is expanded using
distributivity we get:
(it =" ] trw:
feC(X)zeX
which is the same as the left hand side.
Now suppose that X is a G-set.

Definition 3.2 (Equivalence of colourings). The set C'(X) inherits an
action of G from X. For f € C(X) and g € G,

g-flx)=flg" - a).
To colourings f1, fo € C(X) are said to be equivalent if they lie in the
same G-orbit.

Obviously, equivalent colourings have the same weight. Let A(X;7)
denote the set of all vectors (Aq,...,\,) of vectors with non-negative
integer coordinates that sum to | X|. For A € A(X,r), let Cy(X) denote
the colourings of X with weight ¢*.

4. CYCLE TYPE OF A PERMUTATION

Let X be a finite set, and g : X — X be a bijection. Write ¢ - x
for the image of x under g. Take any element x € X and consider the
sequence obtained by repeatedly applying g to z:

2
T,9-T,9°-T,....
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Since X is finite, there exist 0 < ¢ < j such that ¢*-x = ¢/ -x. Applying
g~ to both sides gives x = ¢~ - x. Therefore there exists d > 0 such
that ¢¢ -z = x. Assume further that for no d’ < d, ¢* - © = z. Then
all the elements
x,gm,...,gd’lm

must be distinct. The set {z,g-x,...,9% 1 -z} is called a cycle of
g. The cycles of g partition X into parts, say Xi,...,X,,. Arrange
these parts in decreasing order of cardinality. Let uy > po > -+ > p,
denote the cardinalities of the cycles of g. The vector u = (1, ..., fim)
is called the cycle type of g.

For any vector u = (1, ..., tm) of non-negative integers, let
Pu(tl, o ty) = H(t‘fz 4o,
i=1

The polynomial p, is called a power sum symmetric function.

Lemma 4.1. Let g € G, and let C)(X)? denote the set of elements of
C\(X) fixed by g.

D> CAX) = pug(tr, - o).

AeA(X,r)

Proof. When the right-hand side is expanded using distributivity, we
get:

T T T m
Syl
i=lig=1  ip=1j=1
Let Xi,..., X, be the cycles of g in X. Each (iy,--- ,i,,) determines
a colouring of X as follows: colour all the elements of the cycle X;
with the colour i;. The colouring so constructed is invariant under g
since it is the same for all elements in a cycle of g. Conversely every
G-invariant colouring arises in this manner. Moreover, the weight of

this colouring is H T tﬁ‘J ‘. Summing over all such (i1, ..., i,) therefore
gives the left hand 81de of the identity in Lemma 4.1 U

5. THE PorLyA ENUMERATION THEOREM

Theorem 5.1 (Polya Enumeration Theorem).

(1) > IG\CAUX)[E = ‘G|Zpu(g) Th,. .. a).

AEA(X,r) gea
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Proof. Applying the orbit-counting lemma to the action of G on C)\(X),
we have:

|G\CA (X Z |CA (X

geG

Now applying Lemma [£.1] gives

> IG\CA(X) [ = | Z > lCa(x)?

AEA(X,r) AeA(X r) g€G
Zpug) tl,..., )
gEG
as required. 0

Call the symmetric polynomial on the right hand side of (1)) the Polya
polynomial of G. The following section discusses a standard class of
examples.

6. NECKLACE COLOURINGS

Consider a necklace with n beads, which are allowed to be of r pos-
sible colours, ¢, ..., c.. Thus a typical necklace can be described by a
list of colours: ¢;,,c;,, ..., c;, , describing the colours of the beads start-
ing at some particular bead and going clockwise around the necklace.
The case n = 5 is shown below.

@\d@

There is an ambiguity in the choice of the first bead whose colour is
listed. Thus the necklace ¢;,,c;,,...,c;, is the same as the necklace
Ciys Cigs - - -5 Cipy s Ciy - T'his situation can be modelled as a group action
as follows: let G be the group Z/nZ, the group of residue classes of
integers modulo n, also known as the cyclic group of order n. The
group G acts on itself by the translation action g -z = g + x.
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For every integer n, let ¢(n) denote the number of integers 0 <
1 < n that are coprime to n. The function ¢ is the well-known Fuler
totient function, and ¢(n) can also be interpreted as the number of
generators of Z/nZ. For each d|n, Z/nZ has exactly one subgroup of
order d, generated by the residue class of n/d. This subgroup has ¢(d)
generators. Thus Z/nZ has ¢(d) elements that generate this subgroup.
Since every element of Z/nZ generates a unique such subgroup, we get

the identity:
n=> ¢(d).
din

The orbit of 0 € Z/nZ under r € Z/n’Z is the subgroup generated by
r. If d is the ged of n and r, then this subgroup is dZ/nZ = Z/(n/d)Z.
The orbit of an element i € Z/mZ under r is a coset of this subgroup.
Thus the cycle type or r is (n/d,n/d,...,n/d) (with d repetitions).
The number of elements of Z/nZ which generate its cyclic subgroup
of order n/d is given by ¢(n/d). Thus the Polya polynomial for this
group action in r variables is:

1 /d
ozt ot :—E Ay
¢Z/ Z( 1, ) ) n ? qb(”/ )( 1 + r )
If n is a prime this takes a simpler form:

(n =17+ )+ (t -+ t)"
- .

¢Z/nZ(t17 . 7t'r) -
Taking n = 5 and r = 2 we get:

) ey

= 1] + tity + 26515 + 2Tt5 + ity + 15

So when there are two colours, (say black and white), there are two
distinct necklaces with five beads, of which two are black and three are
white. These are:

and
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When n = 6 and r = 2, the possible values of d|6 are 1,2, 3,6, which
¢-values 1,1, 2, 2, respectively. We get

208 +18) + 2(¢3 + 13)% + (2 + 2)° + (11 + 1)
bz/6z(t1,t2) = 5

=18 + 3ty + 3tits + A3t + 3t5ty + it + 15,

Thus, for example, there are four distinct necklaces with three white
and three black beads. Can you list them?

7. IMPLEMENTATION IN SAGE

The open-source mathematical software system Sage has two mod-
ules which make it almost trivial to compute the Polya polynomial for
a group action: it has an interface with GAP for permutation groups
and a module for symmetric functions.

A permutation group is nothing but an abstract group expressed as a
subgroup of .S,, for some n. A permutation group is no different from a
group action. Indeed if G acts on X, a set of order n, then labelling the
elements of X by integers 1, ..., n allows us to think of each element of
G as a permutation of n letters. Thus the cyclic group group of order
6 is naturally realized as a subgroup of S in Sage:

sage: C = CyclicPermutationGroup (6)
sage: list (C)

()
(1,2,3,4,5,6
(1,3 5)(2 4
(1,4)(2,5)(3
(1, 5 3)(2 6,4
(1,6,5,4,3,2)]

)
,6),
,6)
)

Y

The reader is encouraged to explore permutation groups in Sage with
the help of the documentation at http://doc.sagemath.org/html/
en/reference/groups/sage/groups/perm_gps/permgroup.html.

The other module on symmetric functions makes it very easy to
construct the power sum symmetric functions p, and expand them in
a specified number of variables:

sage: def polya_poly(G,r):
ce S = SymmetricFunctions (QQ)
P = S.powersum ()

p = sum ([P[w.cycle_type ()] for w in G])/G.order ()

return p.expand(r)


http://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
http://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
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Using this code, the example of Section [6] can be obtained as follows:

sage: polya_poly (CyclicPermutationGroup (5),2)

x0"5 4+ x0"4xx1 4+ 2*x0"3*xx1"2 + 2xx0"2xx1"°3 + x0xx1°4 + x1°5
sage: polya_poly(CyclicPermutationGroup (6) ,2)

x0°6 + x0"5xx1 + 3*x0"4*xx1"2 + 4%xx0"3xx1"3 + 3xx0"2%x1"4 +
x0xx1°5 + x176

It is easy to do much fancier things. For example, the number of
colourings of the vertices of a dodecahedron in two colours up to its
self-isometries can be computed as follows:

sage: D = graphs.DodecahedralGraph ()

sage: G = D.automorphism _group ()

sage: polya_poly (G,2)

x0720 + x0719%x1 + 5xx0"18+x1"2 + 15xx0"17+x1"3 +
58%x0 " 16%x1"4 + 149%xx0"15xx1"5 + 371xx0"14%xx1"6 +
693xx0 " 13xx1"7 + 1135%xx0"12xx1"8 + 1466xx0 " 11xx1"9
4+ 1648%xx0"10xx1"10 4+ 1466*x0"9xx1"11 +
1135%xx0"8%x1712 + 693%xx0 " 7+xx1"13 + 371xx0"6xx1"14
+ 149%x0"5%xx1 715 + 58%x0"4*xx1"16 + 15%xx0"3xx1"17
4+ 5xx0"2xx1718 + x0*xx1719 + x1°20

showing that, for example, there are 1648 inequivalent colourings of
the vertices of the dodecahedron with ten vertices coloured black and
ten vertices coloured white.
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