
REPRESENTATIONS, CHARACTERS,
AND COUNTING COLORINGS UNDER SYMMETRY

AMRITANSHU PRASAD

This article is an exposition of Polya’s theory of counting colourings
of structures under symmetry. It is based on a lecture given to the
students of Amrita University on 16th September 2019 and at the in-
augural talk of the Berchmans webinar series in Mathematics on 28th
May 2020. For a deeper understanding of the topic, the reader is en-
couraged to read the book of Polya and Read [1].

1. Representations, Characters, and Invariant Vectors

Let G be a finite group and V be a finite-dimensional vector space
over C. Let GL(V ) denote the set of all invertible linear transforma-
tions V → V . The set GL(V ) becomes a group under composition.

Definition 1.1 (Representation). A representation of G on V is a
function ρ : G→ GL(V ) such that

ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G.

In other words, ρ is a group homomorphism.

Given a linear transformation T : V → V , we write tr(T ;V ) for the
trace of T on V .

Definition 1.2 (Character). The character of a representation ρ :
G→ GL(V ) is the function χρ : G→ C defined by:

χρ(g) = tr(ρ(g);V ).

Exercise 1.3. Show that, for any g, h ∈ G,
χρ(ghg

−1) = χρ(h).

In other words, the function χρ is constant on the conjugacy classes of
G. A function that is constant on conjugacy classes is known as a class
function The above exercise shows that the character of a representation
is a class function.

Definition 1.4 (Invariant vector). Let ρ : G→ GL(V ) be a represen-
tation. A vector v ∈ V is said to be an invariant vector if

ρ(g)v = v for all g ∈ G.
1
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The set of invariant vectors is denoted V G.

Exercise 1.5. Show that V G is a subspace of V .

Theorem 1.6. For any representation ρ : G→ GL(V ),

dimV G =
1

|G|
∑
g∈G

χρ(g).

Proof. Define a linear map P : V → V by:

P (v) =
1

|G|
∑
g∈G

ρ(g)v.

We claim that

(1) P 2 = P (in other words, P is idempotent),
(2) P (V ) = V G.

Since P 2 = P , P (I − P ) = 0. It follows that the only eigenvalues
of P are 0 and 1. Therefore the rank of P , which is the number of
non-zero characteristic roots, is the multiplicity of 1 as a characteristic
root, which is also the sum of characteristic roots, and hence the trace
of P . Thus

dimV G = rankP = trP =
1

|G|
∑
g∈G

tr(ρ(g);V ),

as required. �

2. The Orbit-Counting Theorem

Definition 2.1 (G-set). A G-set X is a set X, together with a function
G×X → X denoted by (g, x) 7→ g ·x (called the action function) such
that, if we write a(g, x) as g · x, then

(gh) · x = g · (h · x).

Given a G-set X and an element x ∈ X, the G-orbit of x, denoted
G ·x is the set of all elements that can be obtained from x by the action
of G:

G · x = {g · x | g ∈ G}.
For x, y ∈ X, say that x ∼G y if y lies in the G-orbit of x. Then using
the properties of groups and Definition 2.1, it is easy to show that ∼G
is an equivalence relation on X. Its equivalence classes are the G-orbits
of X. The set of G-orbits of X is denoted G\X. For each g ∈ G, let
Xg denote the points of X that are fixed by g, i.e.,

Xg = {x ∈ X | g · x = x}.
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The following theorem is popularly called Burnside’s lemma, or the
Cauchy-Frobenius lemma.

Theorem 2.2 (Orbit-counting Theorem). For any G-set X,

|G\X| = 1

|G|
∑
g∈G

|Xg|.

Proof. Let V be a vector space with basis {1x | x ∈ X}. For each
g ∈ G, define a linear map ρ(g) : V → V by:

ρ(g)1x = 1g·x.

Then ρ is a representation of G on V in the sense of Definition 1.1.
With respect to the basis {1x | x ∈ X}, the matrix of ρ(g) has entries
ρ(g)xy = δx,g·y, where δ denotes the Kronecker delta function. We have:

tr(ρ(g), V ) =
∑
x∈X

ρ(g)xx = |{x ∈ X | g · x = x}| = |Xg|.

Now let us determine V G, the subspace of G-invariant vectors in V .
Every vector v ∈ V is of the form:

v =
∑
x∈X

αx1x, for uniquely determined scalars αx.

We have:

ρ(g)v =
∑
x∈X

αx1g·x =
∑
x∈X

αg−1·x1x.

Thus, if ρ(g)v = v, equating the coefficients of basis vectors shows that
αg−1·x = αx for all x ∈ X. So v ∈ V G if the function x 7→ αx is constant
on G-orbits in X. Hence a vector in V G is determined by specifying
the coefficient of 1x for one x in each G-orbit in X. In other words,
dimV G = |G\X|. Now we have:

|G\X| = dimV G

=
1

|G|
∑
g∈G

tr(ρ(g);V )

=
1

|G|
∑
g∈G

|Xg|,

completing the proof of the orbit-counting theorem. �
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3. Colourings of a Set

Suppose we are given a set C = {c1, . . . , cr} of colours. A colouring
of a set X can be regarded as a function f : X → C. Denote the set
of all colourings of X by C(X).

Definition 3.1 (Weight of a colouring). To each colour ci ∈ C, as-
sociate a variable ti. The weight of a colouring f ∈ C(X) is defined
as:

w(f) = tλ11 t
λ2
2 · · · tλrr ,

where λi it the number of elements of X such that f(x) = ci. Abbre-
viate tλ11 t

λ2
2 · · · tλrr to tλ.

To warm up, and illustrate how these weights will be used we first
state a simple identity involving such weights:∑

f∈C(X)

w(f) = (t1 + · · ·+ tr)
|X|.

To prove this, observe that when the right hand side is expanded using
distributivity we get:

(t1 + · · ·+ tr)
|X| =

∑
f∈C(X)

∏
x∈X

tf(x),

which is the same as the left hand side.
Now suppose that X is a G-set.

Definition 3.2 (Equivalence of colourings). The set C(X) inherits an
action of G from X. For f ∈ C(X) and g ∈ G,

g · f(x) = f(g−1 · x).

To colourings f1, f2 ∈ C(X) are said to be equivalent if they lie in the
same G-orbit.

Obviously, equivalent colourings have the same weight. Let Λ(X; r)
denote the set of all vectors (λ1, . . . , λr) of vectors with non-negative
integer coordinates that sum to |X|. For λ ∈ Λ(X, r), let Cλ(X) denote
the colourings of X with weight tλ.

4. Cycle Type of a Permutation

Let X be a finite set, and g : X → X be a bijection. Write g · x
for the image of x under g. Take any element x ∈ X and consider the
sequence obtained by repeatedly applying g to x:

x, g · x, g2 · x, . . . .
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Since X is finite, there exist 0 ≤ i < j such that gi ·x = gj ·x. Applying
g−i to both sides gives x = gj−i · x. Therefore there exists d ≥ 0 such
that gd · x = x. Assume further that for no d′ < d, gd

′ · x = x. Then
all the elements

x, g · x, . . . , gd−1 · x

must be distinct. The set {x, g · x, . . . , gd−1 · x} is called a cycle of
g. The cycles of g partition X into parts, say X1, . . . , Xm. Arrange
these parts in decreasing order of cardinality. Let µ1 ≥ µ2 ≥ · · · ≥ µm
denote the cardinalities of the cycles of g. The vector µ = (µ1, . . . , µm)
is called the cycle type of g.

For any vector µ = (µ1, . . . , µm) of non-negative integers, let

pµ(t1, . . . , tr) =
m∏
i=1

(tµi1 + · · ·+ tµir ).

The polynomial pµ is called a power sum symmetric function.

Lemma 4.1. Let g ∈ G, and let Cλ(X)g denote the set of elements of
Cλ(X) fixed by g. ∑

λ∈Λ(X,r)

|Cλ(X)g|tλ = pµ(g)(t1, . . . , tr).

Proof. When the right-hand side is expanded using distributivity, we
get:

r∑
i1=1

r∑
i2=1

· · ·
r∑

im=1

m∏
j=1

tµiij .

Let X1, . . . , Xm be the cycles of g in X. Each (i1, · · · , im) determines
a colouring of X as follows: colour all the elements of the cycle Xj

with the colour ij. The colouring so constructed is invariant under g
since it is the same for all elements in a cycle of g. Conversely every
G-invariant colouring arises in this manner. Moreover, the weight of
this colouring is

∏m
j=1 t

µi
ij

. Summing over all such (i1, . . . , im) therefore
gives the left hand side of the identity in Lemma 4.1. �

5. The Polya Enumeration Theorem

Theorem 5.1 (Polya Enumeration Theorem).

(1)
∑

λ∈Λ(X,r)

|G\Cλ(X)|tλ =
1

|G|
∑
g∈G

pµ(g)(x1, . . . , xr).
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Proof. Applying the orbit-counting lemma to the action of G on Cλ(X),
we have:

|G\Cλ(X)| = 1

|G|
∑
g∈G

|Cλ(X)g|.

Now applying Lemma 4.1 gives∑
λ∈Λ(X,r)

|G\Cλ(X)|tλ =
1

|G|
∑

λ∈Λ(X,r)

∑
g∈G

|Cλ(X)g|tλ

=
1

|G|
∑
g∈G

pµ(g)(t1, . . . , tr),

as required. �

Call the symmetric polynomial on the right hand side of (1) the Polya
polynomial of G. The following section discusses a standard class of
examples.

6. Necklace colourings

Consider a necklace with n beads, which are allowed to be of r pos-
sible colours, c1, . . . , cr. Thus a typical necklace can be described by a
list of colours: ci1 , ci2 , . . . , cin , describing the colours of the beads start-
ing at some particular bead and going clockwise around the necklace.
The case n = 5 is shown below.

c1

c2

c3

c4

c5

There is an ambiguity in the choice of the first bead whose colour is
listed. Thus the necklace ci1 , ci2 , . . . , cin is the same as the necklace
ci2 , ci3 , . . . , cin , ci1 . This situation can be modelled as a group action
as follows: let G be the group Z/nZ, the group of residue classes of
integers modulo n, also known as the cyclic group of order n. The
group G acts on itself by the translation action g · x = g + x.
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For every integer n, let φ(n) denote the number of integers 0 ≤
i < n that are coprime to n. The function φ is the well-known Euler
totient function, and φ(n) can also be interpreted as the number of
generators of Z/nZ. For each d|n, Z/nZ has exactly one subgroup of
order d, generated by the residue class of n/d. This subgroup has φ(d)
generators. Thus Z/nZ has φ(d) elements that generate this subgroup.
Since every element of Z/nZ generates a unique such subgroup, we get
the identity:

n =
∑
d|n

φ(d).

The orbit of 0 ∈ Z/nZ under r ∈ Z/nZ is the subgroup generated by
r. If d is the gcd of n and r, then this subgroup is dZ/nZ ∼= Z/(n/d)Z.
The orbit of an element i ∈ Z/mZ under r is a coset of this subgroup.
Thus the cycle type or r is (n/d, n/d, . . . , n/d) (with d repetitions).
The number of elements of Z/nZ which generate its cyclic subgroup
of order n/d is given by φ(n/d). Thus the Polya polynomial for this
group action in r variables is:

φZ/nZ(t1, . . . , tr) =
1

n

∑
d|n

φ(n/d)(t
n/d
1 + · · · tn/dr )d.

If n is a prime this takes a simpler form:

φZ/nZ(t1, . . . , tr) =
(n− 1)(tn1 + · · ·+ tnr ) + (t1 + · · ·+ tr)

n

n
.

Taking n = 5 and r = 2 we get:

φZ/5Z(t1, t2) =
4(t51 + t52) + (t1 + t2)5

5
= t51 + t41t2 + 2t31t

2
2 + 2t21t

3
2 + t1t

4
2 + t52.

So when there are two colours, (say black and white), there are two
distinct necklaces with five beads, of which two are black and three are
white. These are:

and
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When n = 6 and r = 2, the possible values of d|6 are 1, 2, 3, 6, which
φ-values 1, 1, 2, 2, respectively. We get

φZ/6Z(t1, t2) =
2(t61 + t62) + 2(t31 + t32)2 + (t21 + t22)3 + (t1 + t2)6

6
= t61 + t51t2 + 3t41t

2
2 + 4t31t

3
2 + 3t21t

4
2 + t1t

5
2 + t62.

Thus, for example, there are four distinct necklaces with three white
and three black beads. Can you list them?

7. Implementation in Sage

The open-source mathematical software system Sage has two mod-
ules which make it almost trivial to compute the Polya polynomial for
a group action: it has an interface with GAP for permutation groups
and a module for symmetric functions.

A permutation group is nothing but an abstract group expressed as a
subgroup of Sn for some n. A permutation group is no different from a
group action. Indeed if G acts on X, a set of order n, then labelling the
elements of X by integers 1, . . . , n allows us to think of each element of
G as a permutation of n letters. Thus the cyclic group group of order
6 is naturally realized as a subgroup of S6 in Sage:

sage : C = CyclicPermutationGroup (6)
sage : l i s t (C)
[ ( ) ,

( 1 , 2 , 3 , 4 , 5 , 6 ) ,
( 1 , 3 , 5 ) ( 2 , 4 , 6 ) ,
( 1 , 4 ) ( 2 , 5 ) ( 3 , 6 ) ,
( 1 , 5 , 3 ) ( 2 , 6 , 4 ) ,
( 1 , 6 , 5 , 4 , 3 , 2 ) ]

The reader is encouraged to explore permutation groups in Sage with
the help of the documentation at http://doc.sagemath.org/html/

en/reference/groups/sage/groups/perm_gps/permgroup.html.
The other module on symmetric functions makes it very easy to

construct the power sum symmetric functions pµ and expand them in
a specified number of variables:

sage : de f po lya po ly (G, r ) :
. . . . : S = SymmetricFunctions (QQ)
. . . . : P = S . powersum ( )
. . . . : p = sum ( [P[w. c y c l e t y p e ( ) ] f o r w in G] ) /G. order ( )
. . . . : r e turn p . expand ( r )

http://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
http://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
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Using this code, the example of Section 6 can be obtained as follows:

sage : po lya po ly ( CyclicPermutationGroup ( 5 ) , 2 )
x0ˆ5 + x0ˆ4∗x1 + 2∗x0ˆ3∗x1ˆ2 + 2∗x0ˆ2∗x1ˆ3 + x0∗x1ˆ4 + x1ˆ5
sage : po lya po ly ( CyclicPermutationGroup ( 6 ) , 2 )
x0ˆ6 + x0ˆ5∗x1 + 3∗x0ˆ4∗x1ˆ2 + 4∗x0ˆ3∗x1ˆ3 + 3∗x0ˆ2∗x1ˆ4 +
x0∗x1ˆ5 + x1ˆ6

It is easy to do much fancier things. For example, the number of
colourings of the vertices of a dodecahedron in two colours up to its
self-isometries can be computed as follows:

sage : D = graphs . DodecahedralGraph ( )
sage : G = D. automorphism group ( )
sage : po lya po ly (G, 2 )
x0ˆ20 + x0ˆ19∗x1 + 5∗x0ˆ18∗x1ˆ2 + 15∗x0ˆ17∗x1ˆ3 +
58∗x0ˆ16∗x1ˆ4 + 149∗x0ˆ15∗x1ˆ5 + 371∗x0ˆ14∗x1ˆ6 +
693∗x0ˆ13∗x1ˆ7 + 1135∗x0ˆ12∗x1ˆ8 + 1466∗x0ˆ11∗x1ˆ9
+ 1648∗x0ˆ10∗x1ˆ10 + 1466∗x0ˆ9∗x1ˆ11 +
1135∗x0ˆ8∗x1ˆ12 + 693∗x0ˆ7∗x1ˆ13 + 371∗x0ˆ6∗x1ˆ14
+ 149∗x0ˆ5∗x1ˆ15 + 58∗x0ˆ4∗x1ˆ16 + 15∗x0ˆ3∗x1ˆ17
+ 5∗x0ˆ2∗x1ˆ18 + x0∗x1ˆ19 + x1ˆ20

showing that, for example, there are 1648 inequivalent colourings of
the vertices of the dodecahedron with ten vertices coloured black and
ten vertices coloured white.
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