MACKEY'S LITTLE GROUP METHOD

AMRITANSHU PRASAD¹ AND M. K. VEMURI²

ABSTRACT. Wigner and Mackey's "little group method" for constructing representations is described for finite groups.

1. INDUCED REPRESENTATIONS

Let G be a finite group and H any subgroup. Let $\sigma : H \to U(\mathcal{H}_{\sigma})$ be a unitary representation. H acts on the right of the product $G \times \mathcal{H}_{\sigma}$ by

$$(g, x) \cdot h = (gh, \sigma(h^{-1})x)$$
 for all $h \in H, g \in G, x \in \mathcal{H}_{\sigma}$.

The quotient space $\mathcal{E}_{\sigma} = (G \times \mathcal{H}_{\sigma})/H$ is a vector bundle over G/H. Let \mathcal{H}_{π} be the space of all sections over G/H of this bundle. G acts on \mathcal{H}_{π} by

$$(\pi(g)s)(\gamma) = s(g^{-1}\gamma)$$
 for all $g \in G$, and $\gamma \in G/H$.

The resulting representation π of G on \mathcal{H}_{π} is called the representation of G induced from the representation σ of H. We write $\pi = \operatorname{Ind}_{H}^{G} \sigma$.

Proposition 1.1. Let $\operatorname{Ind}_{H}^{G} \mathcal{H}_{\sigma}$ be the space of all functions $\tilde{s} : G \to \mathcal{H}_{\sigma}$ satisfying

$$\tilde{s}(gh) = \sigma(h^{-1})\tilde{s}(g)$$

Then the map $s(gH) = (g, \tilde{s}(g))H$ is a well-defined section of \mathcal{E}_{σ} . Moreover, when G is made to act on $\operatorname{Ind}_{H}^{G} \mathcal{H}_{\sigma}$ by

$$g' \cdot \tilde{s}(g) = \tilde{s}(g'^{-1}g),$$

The map $\tilde{s} \mapsto s$ is an isomorphism of G-representations.

Proof. To check that s is well-defined, suppose that $h \in H$. Then $(gh, \tilde{s}(gh)) = (gh, \sigma(h^{-1})\tilde{s}(g))$, which lies in the same H-orbit of $G \times \mathcal{H}_{\sigma}$ as $(g, \tilde{s}(g))$.

Given a section s of \mathcal{E}_{σ} , define \tilde{s} so that $s(g) = (g, \tilde{s}(g))H$ for each g in G. This defines an inverse to the map $\tilde{s} \mapsto s$.

Date: Fri Jun 29 09:18:48 IST 2007.

2. Systems of Imprimitivity

Let G be a finite group, and $\pi : G \to U(\mathcal{H}_{\pi})$ a unitary representation.

Definition 2.1. A system of imprimitivity for π is a G-set Γ together with a decomposition

$$\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma}$$

such that $\pi(g)\mathcal{H}_{\gamma} \subseteq \mathcal{H}_{g\gamma}$.

Example 2.2. If N is a normal subgroup of G, then G acts on the set \hat{N} of equivalence classes of unitary irreducible representations of N by $(g\gamma)(n) = \gamma(g^{-1}ng)$ (the representation space of $g\gamma$ is also taken to be \mathcal{H}_{γ} ; clearly, the action is trivial when restricted to N). Let

$$\mathcal{H}_{\gamma} = \{\pi(\epsilon_{\gamma})x | x \in \mathcal{H}_{\pi}\}$$

where $\epsilon_{\gamma} \in \mathbf{C}[N]$ is the central idempotent corresponding to $\gamma \in \hat{N}$. Then

$$\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \hat{N}} \mathcal{H}_{\gamma}.$$

For any $s \in G$ and $x \in \mathcal{H}_{\pi}$, we have

$$\pi(g)(\pi(\epsilon_{\gamma})x) = \pi(g)\pi(\epsilon_{\gamma})\pi(g^{-1})\pi(g)x$$

= $\pi(\epsilon_{q\gamma})\pi(g)x,$

and so $\pi(g)\mathcal{H}_{\gamma} \subset \mathcal{H}_{g\gamma}$.

Example 2.3. Let H be any subgroup of G, and let $\sigma : H \to U(\mathcal{H}_{\sigma})$ be a unitary representation. Let $\pi = \operatorname{Ind}_{H}^{G} \sigma$ and let \mathcal{H}_{γ} be the fibre of \mathcal{E}_{σ} (see §1) over $\gamma \in G/H$. Then

$$\mathcal{H}_{\pi} = igoplus_{\gamma \in G/H} \mathcal{H}_{\gamma}$$

is a system of imprimitivity for π .

Definition 2.4. The system of imprimitivity $\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma}$ is transitive if the action of G on Γ is transitive.

Example 2.3 is an example of a transitive system of imprimitivity.

3. Mackey's Imprimitivity Theorem

Theorem 3.1 (Mackey's Imprimitivity Theorem). Let π be any representation of G, and suppose $\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma}$ is a transitive system of imprimitivity for π . For any point $\gamma \in \Gamma$, let G_{γ} denote the stabiliser of γ in G. Let π_{γ} denote the representation of G_{γ} on \mathcal{H}_{γ} . Then π is isomorphic to $\mathrm{Ind}_{G_{\gamma}}^{G} \pi_{\gamma}$.

LITTLE GROUPS

Proof. The map $gG_{\gamma} \mapsto g\gamma$ induces an isomorphism $G/G_{\gamma} \to \Gamma$ of G-sets. Therefore, any $x \in \mathcal{H}_{\pi}$ can be written uniquely as

$$x = \sum_{gG_{\gamma} \in G/G_{\gamma}} x_{g\gamma}$$
, with $x_{g\gamma} \in H_{g\gamma}$ for each coset gG_{γ} .

Moreover, $g^{-1}x_{g\gamma} \in \mathcal{H}_{\gamma}$. Therefore, one may define a map $\Phi : \mathcal{H}_{\pi} \to \operatorname{Ind}_{G_{\gamma}}^{G} \mathcal{H}_{\gamma}$ by $(\Phi(x))(g) = \pi(g^{-1})x_{g\gamma}$. It is not too difficult to verify that this is a homomorphism of *G*-representations $\pi \to \operatorname{Ind}_{G_{\gamma}}^{G} \pi_{\gamma}$. On the other hand, given a section *s* of $\mathcal{E}_{\pi_{\gamma}}$ over G/G_{γ} , define $\Psi(s) \in \mathcal{H}_{\pi}$ by

$$\Psi(s) = \sum_{gG_{\gamma} \in G/G_{\gamma}} \pi(g) s(gG_{\gamma}).$$

This, once again is a homomorphism of G-representations, and Φ and Ψ are mutual inverses.

4. Application to representation theory

Suppose that G is a finite group and that N is a normal subgroup of G. Given any finite dimensional representation π of G write

$$\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \hat{N}} \mathcal{H}_{\gamma},$$

as in Example 2.2. Let

$$\Gamma = \{ \gamma \in \hat{N} | \mathcal{H}_{\gamma} \neq 0 \}.$$

It follows from Example 2.2 that Γ is G-stable.

Lemma 4.1. If π is irreducible, then Γ is a transitive G-set.

Proof. Take any $\gamma \in \Gamma$. Let

$$U' = \bigoplus_{g \in G} \mathcal{H}_{g\gamma}.$$

Then U' is a non-trivial *G*-stable subspace of \mathcal{H}_{π} . Since π is irreducible, $U' = \mathcal{H}_{\pi}$.

We have proved the following

Proposition 4.2. Let π be an irreducible representation of G. Let Γ and \mathcal{H}_{γ} be as above. Then

$$\mathcal{H}_{\pi} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma}$$

is a transitive system of imprimitivity for π . Consequently, by Mackey's imprimitivity theorem, $\pi \cong \operatorname{Ind}_{G_{\gamma}}^{G} \pi_{\gamma}$, where π_{γ} is the representation of G_{γ} on \mathcal{H}_{γ} obtained by restricting π to G_{γ} .

Lemma 4.3. Let G be a group, N a normal subgroup of G, and $\gamma \in \hat{N}$. If $\pi_{\gamma} \in \hat{G}_{\gamma}$ is such that its restriction to N is γ -isotypic, then $\operatorname{Ind}_{G_{\gamma}}^{G} \pi_{\gamma}$ is irreducible.

Proof. By Frobenius reciprocity,

(*) $\operatorname{End}_{G}(\operatorname{Ind}_{G_{\gamma}}^{G}\pi_{\gamma}) = \operatorname{Hom}_{G_{\gamma}}(\pi_{\gamma}, \operatorname{Res}_{G_{\gamma}}^{G}\operatorname{Ind}_{G_{\gamma}}^{G}\pi_{\gamma}).$

On the other hand,

$$\operatorname{Res}_{G_{\gamma}}^{G}\operatorname{Ind}_{G_{\gamma}}^{G}\pi_{\gamma} \cong \bigoplus_{G_{\gamma} \times G_{\gamma} \in G_{\gamma} \setminus G/G_{\gamma}} \pi_{\gamma}^{x}$$

Now, π_{γ}^x , when restricted to N is γ^x isotypic. Therefore π_{γ}^x is not isomorphic to π_{γ} unless $x \in G_{\gamma}$. It follows that the spaces in (*) are one dimensional, and hence that $\operatorname{Ind}_{G_{\gamma}}^G \pi_{\gamma}$ is irreducible.

Combining Proposition 4.2 with Lemma 4.3 gives

Theorem 4.4. The function $\pi \mapsto \Gamma$ is a surjective map from \hat{G} to \hat{N}/G . The fibre over the orbit of $\gamma \in \hat{N}$ is in bijective correspondence with the irreducible representations of G_{γ} whose restriction to N is γ -isotypic.

 $^{1}\mathrm{The}$ Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

E-mail address: amri@imsc.res.in

²Chennai Mathematical Institute, Plot H1, SIPCOT IT Park Padur PO, Siruseri 603103, India

E-mail address: mkvemuri@cmi.ac.in