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KNUTH’S MOVES ON TIMED WORDS

AMRITANSHU PRASAD

Abstract. We give an exposition of Schensted’s algorithm to find the length

of the longest increasing subword of a word in an ordered alphabet, and

Greene’s generalization of Schensted’s results using Knuth equivalence. We

announce a generalization of these results to timed words.

1. Introduction

The theory of Young tableaux lies at the cross-roads of modern combinatorics,

the theory of symmetric functions, enumerative problems in geometry, and repre-

sentation theory (see [Ful97, Man98, Pra15, Pra18a]). Young tableaux are named

after Alfred Young, who introduced them in his study of the representation the-

ory of symmetric groups, which he called substitutional analysis [You00]. Young

tableaux played an important role in the proof of the Littlewood-Richardson rule.

This is a rule for computing the Littlewood-Richardson coefficients cλµν , which

arise as (for details, see [Ful97, Man98]):

• the multiplicity of the irreducible polynomial representationWλ ofGLn(C)

in a tensor product Wµ ⊗Wν .

• the coefficient of the Schur polynomial sλ in the expansion of a product

sµsν of Schur polynomials.

• the number of points of intersection of Schubert varieties Xµ, Xν and Xλ̌

in general position.

Robinson [Rob38] outlined an approach to the Littlewood-Richardson rule based

on Young tableaux, which was perfected in the work of Lascoux and Schützenberger

[LS78] forty years later. In this expository article, our point of departure is Schen-

sted’s observation [Sch61] that Robinson’s construction of the insertion tableau of

a word can be used as an algorithm to determine the longest increasing subword

of a word in an ordered language. Schensted used this to give a formula for the

number of words with longest increasing subword of a given length. Schensted’s

* This article is based on the text of the 28th Srinivasa Ramanujan Memorial Award Lecture

delivered at the 83rd Annual Conference of the Indian Mathematical Society-An international

Meet held at Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India during

December 12 - 15, 2017.

2010 Mathematics Subject Classification : 05A05, 68R15.

Key words and phrases: Timed words, Knuth equivalence, Greene’s theorem.

c© Indian Mathematical Society, 2018 .
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2 AMRITANSHU PRASAD

results were generalized by Greene [Gre74] using relations which were introduced

by Knuth [Knu70] to characterize the class of words with a given insertion tableau.

In a different context, Alur and Dill [AD94] introduced timed words as a

part of their description of timed automata. Timed automata are generalizations

of finite automata, and are used for the formal verification of real-time systems.

The author has extended Greene’s theorem to timed words [Pra18b], with the

goal of providing a framework to study piecewise linear versions of bijective corre-

spondences involving Young tableau, such as the ones studied by Berenstein and

Kirillov [Kir11]. The salient features of this extension are outlined here. Detailed

proofs, technical details, and applications to piecewise-linear bijections will appear

in [Pra18b].

2. Schensted’s Algorithm

2.1. Words. Let An denote the set {1, . . . , n}, which we regard as an ordered

alphabet. A word in An is a finite sequence w = c1 · · · ck of elements of An. The

set of all words in An is denoted A∗n. A subword of w = c1 · · · ck is defined to be

a word of the form

w′ = ci1 · · · cim , where 1 ≤ i1 < · · · < im ≤ k.
The subword w′ is said to be weakly increasing if ci1 ≤ · · · ≤ cim .

Consider the following computational problem:

Given a word w ∈ A∗n, determine the maximal length of a weakly

increasing subword of w.

2.2. Tableaux. Schensted [Sch61] gave an elegant algorithm to solve the preced-

ing computational problem. His algorithm makes one pass over the word. At each

stage of its running, it stores a combinatorial object called a semistandard Young

tableau (see Section 2.2.1). This tableau is modified as each successive letter of

the word is read. The length of the longest increasing subword can be read off

from the tableau (see Sections 2.5 and 2.6) obtained when all of w has been read.

Definition 2.2.1 (Semistandard Young Tableau). A semistandard Young

tableau in An is a finite arrangement of integers from An in rows and columns

so that the numbers increase weakly along rows, strictly along columns, so that

there is an element in the first row of each column, there is an element in the first

column of each row, and there are no gaps between numbers.

Let l be the number of rows in the tableau, and for each i = 1, . . . , l, let λi be

the length of the ith row. Then λ = (λ1, . . . , λl) is called the shape of the tableau.

Example 2.2.2. The arrangement

1 1 5
2 4
3

is a semistandard Young tableau of shape (3, 2, 1) in A5.
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The notion of a semistandard Young tableau is a generalization of Young

tableau, which was introduced by Young [You00, p. 133]. In Young’s version, each

element of An occurs exactly once in the tableau. For brevity, we shall henceforth

use the term tableau to refer to a semistandard Young tableau.

2.3. Row Insertion. A word c1c2 · · · ck in A∗n is called a row if c1 ≤ · · · ≤ ck.

Each row of a tableau is a row in the sense of this definition. For each row

u = a1 · · · ak ∈ A∗n, define the row insertion of a into u by:

RINS(u, a) =


(∅, a1 · · · aka) if ak ≤ a,

(aj , a1 · · · aj−1aaj+1 · · · ak) otherwise, with

j = min{i | a < ai}.

Here ∅ should be thought of as an empty word of length zero.

Example 2.3.1. RINS(115, 5) = (∅, 1155), RINS(115, 3) = (5, 113).

It is clear from the construction that, for any row u ∈ A∗n and a ∈ An, if

(a′, u′) = RINS(u, a), then u′ is again a row. For convenience set RINS(u, ∅) =

(∅, u).

2.4. Tableau Insertion. Let t be a tableau with rows u1, u2, . . . , ul. Then

INSERT(t, a), the insertion of a into t, is defined as follows: first a is inserted

into u1; if RINS(u1, a) = (a′1, u
′
1), then u1 is replaced by u′1. Then a′1 is inserted

into u2; if RINS(u2, a
′
1) = (a′2, u3), then u2 is replaced by u′2, a′2 is inserted into u3,

and so on. This process continues, generating a′1, a
′
2, . . . , a

′
k and u′1, . . . , u

′
k. The

tableau t′ = INSERT(t, a) has rows u′1, . . . , u
′
k, and a last row (possibly empty)

consisting of a′k. It turns out that INSERT(t, a) is a tableau [Knu70].

Example 2.4.1. For t as in Example 2.2.2, we have

INSERT(t, 3) = 1 1 3
2 4 5
3

,

since RINS(115, 3) = (5, 113), RINS(24, 5) = (∅, 245).

2.5. Insertion Tableau of a Word.

Definition 2.5.1. The insertion tableau P (w) of a word w is defined recursively

as follows:

P (∅) = ∅ (2.1)

P (c1 · · · ck) = INSERT(P (c1 · · · ck−1), ck). (2.2)

Example 2.5.2. Take w = 3421153. Sequentially inserting the terms of w into the

empty tableau ∅ gives the sequence of tableaux:

3 , 3 4 , 2 4
3

, 1 4
2
3

, 1 1
2 4
3

, 1 1 5
2 4
3

,
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and finally, the insertion tableau P (w) = 1 1 3
2 4 5
3

.

2.6. Schensted’s Theorem. Schensted [Sch61] proved the following:

Theorem 2.6.1. The length of the longest increasing subword of any w ∈ A∗n is

the length of the first row of P (w).

In other words, the algorithm for constructing the insertion tableau of w solves

the computational problem posed in Section 2.1.

The proof of Schensted’s theorem is not very difficult, and the reader is invited

to attempt it. The proof is by induction on k, and uses the observation is that the

last entry of the first row of P (a1 · · · ak) is the least last element of all maximal

length weakly increasing subword of a1 · · · ak.

2.7. Greene’s Theorem. The insertion tableau P (w) obtained from a word w

seems to contain a lot more information than just the length of the longest weakly

increasing subword. For example, what do the lengths of the remaining rows of

P (w) signify? The answer to this question was given by Greene [Gre74]. We

say that subwords c11
· · · cir and cj1 · · · cjs of c1 · · · ck are disjoint if the subsets

{i1, . . . , ir} and {j1, . . . , js} are disjoint.

Definition 2.7.1 (Greene Invariants). The rth Greene invariant of a word w ∈ A∗n
is defined to be the maximum cardinality of a union of r pairwise disjoint weakly

increasing subwords of w.

Example 2.7.2. For w = 3421153 from Example 2.5.2, the longest weakly increas-

ing subwords have length 3 (for example, 113 and 345). The subwords 345 and

113 are disjoint, and no pair of disjoint weakly increasing subwords of w can have

cardinality greater than 6. However, the entire word w is a union of three disjoint

weakly increasing subwords (for example 345, 23 and 15). So the Greene invariants

of w are a1(w) = 3, a2(w) = 6, and a3(w) = 7.

Theorem 2.7.3 (Greene). For any w ∈ An, if P (w) has shape λ = (λ1, . . . , λl),

then for each r = 1, . . . , l, ar(w) = λ1 + · · ·+ λl.

Example 2.7.2 is consistent with Greene’s theorem as the shape of P (w) is

(3, 3, 1) and the Greene invariants are 3, 6 = 3 + 3 and 7 = 3 + 3 + 1, respectively.

2.8. Knuth Equivalence. Greene’s proof of Theorem 2.7.3 is based on the notion

of Knuth equivalence. Knuth [Knu70] identified a pair of elementary moves on

words:

xzy ≡ zxy if x ≤ y < z, (K1)

yxz ≡ yzx if x < y ≤ z. (K2)

For example, in the word 4213443, the segment 213 is of the form yxz, with

x < y ≤ z. A Knuth move of type (K2) replaces this segment by yzx, which is
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231. Thus a Knuth move of type (K2) transforms 4213443 into 4231443. Knuth

equivalence is the equivalence relation on A∗n generated by Knuth moves:

Definition 2.8.1 (Knuth Equvalence). Words w,w′ ∈ A∗n are said to be Knuth

equivalent if w can be transformed into w′ by a series of Knuth moves (K1) and

(K2). If this happens, we write w ≡ w′.

Example 2.8.2. The word 3421153 is Knuth equivalent to 3245113:

3421153 ≡K2 3241153 ≡K2 3214153 ≡K1 3241153 ≡K1 3241513 ≡K1 3245113.

At each stage, the letters to which the Knuth moves will be applied to obtain the

next stage are highlighted.

2.9. Reading Word of a Tableau. Given a tableau, its reading word is obtained

by reading its rows from left to right, starting with the bottom row, and moving

up to its first row.

Example 2.9.1. The reading word of the tableau:

1 1 3
2 4 5
3

is 3245113.

2.10. Proof of Greene’s Theorem. The proof of Greene’s theorem is based on

three observations, all fairly easy to prove:

(1) If w is the reading word of a tableau of shape λ = (λ1, . . . , λl), then

ar(w) = λ1 + · · ·+ λr for r = 1, . . . , l.

(2) Every word is Knuth equivalent to the reading word of its insertion tableau.

(3) Greene invariants remain unchanged under Knuth moves.

We illustrate these points with examples (for detailed proofs, see Lascoux, Leclerc

and Thibon [LLT02], or Fulton [Ful97]). For the first point, in Example 2.9.1 the

first k rows of the tableau

1 1 3
2 4 5
3

are indeed disjoint weakly increasing subwords of its reading word of maximal

cardinality. For the second point, observe that the sequence of Knuth moves in

Example 2.8.2 transform 3421153 to the reading word of its insertion tableau. For

the third point, consider the case of the Knuth move (K1). A word of the from

w = uxzyv is transformed into the word w′ = uzxyv. The only issue is that a

weakly increasing subword g of w may contain both the letters x and z. Then it no

longer remains a weakly increasing subword of w′. However, the subword, being

weakly increasing, cannot contain y, so the z can be swapped for a y. This could

be a problem if y is part of another weakly increasing subword g′ in a collection

of pairwise disjoint weakly increasing subwords. In that case, we have g = g1xzg2
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and g′ = g′1yg
′
2. We may replace them with g1xyg

′
2 and g′1zg2, which would still

be weakly increasing, and would have the same total length as g and g′.

2.11. Characterization of Knuth Equivalence. Knuth equivalence can be

characterized in terms of Greene invariants (see [LS78, Theorem 2.15]).

Theorem 2.11.1. Two words w and w′ in A∗n are Knuth equivalent if and only

if ar(uwv) = ar(uw
′v) for all words u and v in A∗n, and all r ≥ 1.

3. Timed Words

3.1. From Words to Timed Words. Words, in the sense of Section 2, play

an important role in computer science, specifically in the formal verification of

systems. Each letter of the alphabet is thought of as an event. A sequence of events

it then nothing but a word in A∗n. The system is modeled as an automaton having a

starting state, and each time an event occurs, its state changes, depending both, on

its current state, and the event that has occurred. Following the groundbreaking

work of Rabin and Scott [RS59], finite state automata are widely used to model

and formally verify the integrity of systems.

For many real-time systems, such as controllers of washing machines, industrial

processes, and air or railway traffic control, the time gaps between the occurrences

of the events modeled by words are as important as the events themselves.

To deal with real-time systems, Alur and Dill [AD94] developed the theory of

timed automata. A timed automaton responds to a sequence of events that come

with time stamps for their occurrence. They represented a sequence of events with

time stamps by timed words. We introduce a finite variant of the notion of timed

word that they used:

Definition 3.1.1 (Timed Word). A timed word in An is a sequence of the form:

w = ct11 c
t2
2 · · · c

tk
k , (3.1)

where c1, . . . , ck ∈ An, and t1, . . . , tk are positive real numbers, and ci 6= ci+1 for

i = 1, . . . , k − 1. The length of the timed word w above is l(w) = t1 + · · ·+ tk.

A sequence (3.1) where ci = ci+1 also represents a timed word; segments of the

form ct1ct2 are replaced by ct1+t2 until all consecutive pairs of terms have different

letters. The timed word w in (3.1) may also be regarded as a piecewise constant

left-continuous function w : [0, l(w))→ An, where

w(t) = ci if t1 + · · ·+ ti−1 ≤ t < t1 + · · ·+ ti.

The function w : [0, l(w))→ An is called the function associated to the timed word

w. We say that the timed word w is a timed row if c1 < · · · < ck. Timed words

form a monoid under concatenation. The monoid of timed words in the alphabet

{1, . . . , n} is denoted A†n. The map:

a1 · · · ak 7→ a1
1a

1
2 · · · a1

k

defines an embedding of A∗n in A†n as a submonoid.
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Example 3.1.2. An example of a timed word in A†6 of length 7.19 is:

w = 30.8250.0820.4560.6450.9410.1550.0910.5240.2910.5930.9740.4220.6110.0740.55

Using a color-map to represent the integers 1 to 6,

the timed word w can be visualized as a colored ribbon:

.
3.2. Subwords of Timed Words.

Definition 3.2.1 (Time Sample). A time sample of a word w is a subset of

[0, l(w)) of the form:
S = [a1, b1) ∪ · · · ∪ [ak, bk),

where 0 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ l(w). The length of the time

sample S is
∑
i(bi − ai), the Lebesgue measure µ(S) of S.

Given a time sample S ⊂ [0, l(w)), and 0 ≤ t ≤ l(S)), the set

{t̃ | µ(S ∩ [0, t̃)) = t}
is a closed interval [at, bt] ⊂ [0, l(S)). This happens because the function t′ 7→
µ(S∩ [0, t′)) is a piecewise-linear continuous function on [0, l(w)] which takes value

0 at t′ = 0, and l(S) at t′ = 1.

Definition 3.2.2 (Subword of a Timed Word). The subword of a timed word

with respect to a time sample S ⊂ [0, l(w)) is the timed word wS of length µ(S)

whose associated function is given by:

wS(t) = w(bt) for 0 ≤ t < µ(S),

where bt is the largest number in [0, l(w)) such that µ(S ∩ [0, t̃)) = t.

3.3. Timed Tableau.

Definition 3.3.1 (Timed Tableau). A timed tableau is a collection u1, u2, . . . , ul

of timed words such that

(1) Each ui is a timed row (in the sense of Section 3.1).

(2) For each i = 1, . . . , l − 1, l(ui) ≥ l(ui+1).

(3) For each i = 1, . . . , l − 1 and 0 ≤ t < l(ui+1), ui(t) < ui+1(t).

Example 3.3.2. A timed tableau of shape (3.20, 1.93, 1.09, 0.61, 0.29, 0.07) is :

t =11.3320.5430.3640.97

20.5230.9150.50

30.5240.2250.3260.03

40.0750.2260.32

50.0760.22

60.07

In using the color-map from Section 3.1, it can be visualized as:
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The three properties of Definition 3.3.1 are easily perceived from the figure.

Definition 3.3.3 (Reading Word of a Timed Tableau). The reading word of a

timed tableau with rows u1, . . . , ul is the timed word

ulul−1 · · ·u1.

Example 3.3.4. The reading word of the timed tableau in Example 3.3.2 is

60.07 50.0760.22 40.0750.2260.32 30.5240.2250.3260.03 20.5230.9150.50 11.3320.5430.3640.97.

3.4. Timed Insertion. Given a timed word w and 0 ≤ a < b ≤ l(w), according

to Definition 3.2.2, w[a,b) is the timed word of length b− a such that:

w[a,b)(t) = w(a+ t) for 0 ≤ t < b− a.

Definition 3.4.1 (Timed Row Insertion). Given a timed row w, define the in-

sertion RINS(w, ctc) of ctc into w as follows: if w(t) ≤ c for all 0 ≤ t < l(u),

then

RINS(w, ctc) = (∅, wctc).

Otherwise, there exists 0 ≤ t < l(w) such that w(t) > c. Let

t0 = min{0 ≤ t < l(w) | w(t) > c}.
Define

RINS(w, ctc) =

(w[t0,t0+tc), w[0,t0)c
tcw[t0+tc,l(w))) if l(w)− t0 > tc,

(w[t0,l(u)), w[0,t0)c
tc) if l(w)− t0 ≤ tc.

It is obvious that the above definition is compatible with the definition of RINS

from Section 2.4 when u is a row in A∗n, and tc = 1. If u = ct11 · · · c
tl
l is a timed

word, define RINS(w, u) by induction on l as follows: Having defined (v′, w′) =

RINS(w, ct11 · · · c
tl−1

l−1 ), let (v′′, w′′) = RINS(w′, ctll ). Then define

RINS(w, u) = (v′v′′, w′′).

Example 3.4.2. RINS(11.421.630.7, 10.720.2) = (20.730.2, 12.121.130.5).

Definition 3.4.3 (Timed Tableau Insertion). Let w be a timed tableau with

row decomposition ul . . . u1, and let v be a timed row. Then INSERT(w, v),

the insertion of v into w is defined as follows: first v is inserted into u1. If

RINS(u1, v) = (v′1, u
′
1), then v′1 is inserted into u2; if RINS(u2, v

′
1) = (v′2, u

′
2), then

v′2 is inserted in u3, and so on. This process continues, generating v′1, . . . , v
′
l and

u′1, . . . , u
′
l. INSERT(t, v) is defined to be v′lu

′
l · · ·u′1. Note that it is quite possible

that v′l = ∅.
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Example 3.4.4. Take

w =11.421.630.7

30.841.1,

a timed tableau in A5 of shape (3.7, 1.9). Then

INSERT(w, 10.720.2) =11.72330.2

20.331.240.4

30.340.7

of shape (4.9, 1.9, 1.0).

3.5. Insertion Tableau of a Timed Word.

Definition 3.5.1 (Insertion Tableau of a Timed Word). The insertion tableau

P (w) of a timed word w is defined recursively by the rules:

(1) P (∅) = ∅,
(2) P (wct) = INSERT(P (w), ct).

Example 3.5.2. The tableau in Example 3.3.2 is the insertion tableau of the timed

word in Example 3.1.2.

3.6. Greene Invariants for Timed Words.

Definition 3.6.1 (Greene Invariants for Timed Words). The rth Greene invariant

for a timed word w is defined as:

ar(w)=sup

{
µ(S1)+· · ·+µ(Sr)

∣∣∣∣∣S1, . . . , Sr are pairwise disjoint time samples

of w such that wSi a timed row for each i

}
.

3.7. Greene’s Theorem for Timed Words. All the ingredients are now in

place to state Greene’s theorem for timed words:

Theorem 3.7.1 (Greene’s Theorem for Timed Words). Let w ∈ A†n be a timed

word. Suppose that P (w) has shape λ = (λ1, . . . , λl), then the Greene invariants

of w are given by:

ar(w) = λ1 + · · ·+ λr for r = 1, . . . , l.

For the word w from Example 3.1.2, the insertion tableau has shape

(3.20, 1.93, 1.09, 0.61, 0.29, 0.07),

(given in Example 3.3.2) so the Greene invariants are given by:

a1(w) = 3.20

a2(w) = 3.20 + 1.93 = 5.13

a3(w) = 3.20 + 1.93 + 1.09 = 6.22

a4(w) = 3.20 + 1.93 + 1.09 + 0.61 = 6.83

a5(w) = 3.20 + 1.93 + 1.09 + 0.69 + 0.29 = 7.12

a6(w) = 3.20 + 1.93 + 1.09 + 0.69 + 0.29 + 0.07 = 7.19
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3.8. Knuth Moves on Timed Words. As explained in Section 2.10, the proof

of Greene’s theorem in [Gre74] uses Knuth moves to reduce to the case of reading

words of tableau. The main difficulty in generalizing his theorem to timed words

is to identify the analogues of Knuth relations (K1) and (K2). These relations

need to be simple enough so that it can we shown that if two words differ by such

a relation, then they have the same Knuth invariants. At the same time, they

need to be strong enough to reduce any timed word to its insertion tableau.

Consider the relations:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0), (κ1)

yxz ≡ yzx when xyz is a timed row, l(x) = l(y), and lim
t→l(x)−

x(t) < y(0). (κ2)

Example 3.8.1. We have:

w = 51.1032.1940.8951.2010.3220.44 ≡ w′ = 51.1032.1940.6210.3220.4140.2751.2020.03,

because we may write

w = 51.1032.08yzx20.03,

w′ = 51.1032.08yxz20.03,

where x = 10.3220.41, y = 30.1140.62, and z = 40.2751.20, so w and w′ differ by a

Knuth move of the form (κ2).

We say that two timed words w and w′ are Knuth equivalent (denoted w ≡ w′)
if w can be obtained from w′ by a sequence of Knuth moves of the form (κ1) and

(κ2).

With these definitions, we have the following results, which suffice to complete

the proof of Theorem 3.7.1:

(1) if w is the reading word of a timed tableau of shape λ = (λ1, . . . , λl), then

ar(w) = λ1 + · · ·+ λr for r = 1, . . . , l.

(2) for every w ∈ A†n, w ≡ P (w),

(3) if w ≡ w′, then ar(w) = ar(w
′) for all r.

3.9. Characterization of Knuth Equivalence. Finally, it turns out that Knuth

equivalence for timed words is characterized by Greene invariants, just as in the

classical setting (Section 2.11):

Theorem 3.9.1. Given timed words w,w′ ∈ A†n, w ≡ w′ if and only if, for all

u, v ∈ A†n,
ar(uwv) = ar(uw

′v) for all r > 0.
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MANIFOLDS, DIFFERENT SHADES
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Abstract. Classifications of 1 and 2 dimensional manifolds are classical.

Classifications of 3, 4 and higher (> 4) dimensional manifolds present tech-

niques of different shades. This expository survey article gives an overview

of these developments.

1. Introduction

1.1. Problem. (Classification problem of manifolds): Classification problem of

manifolds involve:

(1) producing a list of all equivalence classes of manifolds (under some suitable

equivalence like, isometry, topological, PL or smooth equivalence etc.), and

(2) developing usable means to determine where a given manifold fits in the list

(recognizing a manifold).

1.2. Remark (see eg. [56]). The problem of recognizing a manifold is not easy, the

manifolds may be given in any form. For example

(i) M = {(x, y) ∈ C | x3 + y3 = 1} represents a torus minus three points,

where as

(ii) N = {[x, y, z] ∈ CP 2 | x3 + y3 = z3} represents a torus.

One should be able to deal with all sorts of description of manifolds.

1.3. Definition. (i) An n-manifold M is a Hausdorff topological space with a

countable base such that for every point x ∈M there is an open neighbourhood U

of x in M and a homeomorphism h : U → V , V is an open subset of Rn containing
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(2). This expository article is an expanded version of the 28th V. Ramaswami Memorial Award

lecture delivered at the 83rd Annual Conference of the Indian Mathematical Society-An interna-

tional Meet held at Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India du-

ring December 12 - 15, 2017. For the benefit of the interested reader, material from many sour-

ces have been adapted and used, many technical terms, definitions and statements of important

theorems are included, along with the reference of their sources.
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0̄, such that h(x) = 0̄. That is, the n-manifold locally looks like the Euclidean

n-space. The pair (U, h) is called a chart or a coordinate system at x.

(ii) An n-manifold with boundary, (M,∂M), is a Hausdorff topological space

M with a countable base such that for every point x ∈ M there is an open

neighbourhood U of x in M and a homeomorphism h : U → V , V is an open

subset of Hn, the closed half n-space. That is the n-manifold locally looks like the

euclidean half n-space. The pair (U, h) is called a chart or a coordinate system

at x. For points x ∈ M \ ∂M a chart can be chosen as in part (i) with h(x) an

interior point of Hn and for the points x ∈ ∂M, V looks like a semi-open-n-ball

with center 0̄, such that h(x) = 0̄.

Boundary ∂M is well defined by invaiance of domain.

2. Classification of curves (1-manifolds)

2.1. Theorem. Let M be a connected 1-manifold. Then M is diffeomorphic either

to [0, 1], [0, 1), (0, 1), or S1.

Here we only give an intuitive idea of how to proceed, the formal proof can be

found in any of the following sources:

(a) Classification of 1-manifolds -

http://www.math.northwestern.edu emurphynotes4.pdf,

(b) THE CLASSIFICATION OF 1 DIMENSIONAL MANIFOLDS -

https://fenix.tecnico.ulisboa.ptdownloadFile3779577337825classif1manifs.pdf,

(c) Classification of 1-Manifolds -

http://www.math.boun.edu.trinstructorswdgillam1manifolds.pdf,

(d) Classification of 1-manifolds -

http://math.mit.educlasses18.9662014SP965class.pdf,

(e) the book of Guillemin and Pollack [24]. Or

(f) the book of Milnor [65].

Using compactness and connectedness arguments one can see that all the above

manifolds are diffeomorphically distinct, two of them are with boundary and two

of them are without boundary. Given a 1-manifold M , take a point x ∈ M , let

(U, h) be a chart at x. Then V will either be of the type (−ε, ε) , or of the type

[0, ε), or of the type (−ε, 0]. Move to the right of x in M as far as possible. Only

three things can happen: either you have to stop at a point and you can not move

any further (closed end point), or you keep on moving forever (open end point), or

you end up coming back to x where you started from the left side (like a circle).

Do the same by moving to the left of x in M as far as possible. This leaves

us with only the above four possibilities for M upto diffeomorphism.

3. Classification of surfaces (2-manifolds)-19 the Century

It has been proved in the 19th century that

(i) Any compact orientable surface is homeomorphic to a sphere or a connected

sum of tori (see figures - “Connected sum” and “Compact orientable surfaces”).
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(ii) Any compact non-orientable surface is homeomorphic to the connected sum of

real projective planes and a compact orientable surface (possibly empty), see the

figure - “Compact nonorientable surface - Klein’s bottle”.

“Euler characteristic” (a surface can be written upto topological equivalence as

a union of triangles joined along their common edges and the Euler characteristic

is given by (V − E + F ), where V,E, F are respectively the number of vertices,

edges and faces; this definition has been generalized further in the literature)

together with “orientability” (roughly a two sided surface is orientable and a one

sided surface is not orientable) provide complete set of invariants (of topological

equivalence).

Main contributors of these results have been, among others, Möbius 1861,

Jordan 1866, Dyck 1888, Dehn and Heegaard 1907, Alexander 1915, Brahana

1921.

Figure 1: Connected sum.

Figure 2: Compact orientable surfaces.

Figure 3: Compact nonorientable surface-Klein’s bottle.

Refer to “A guide to classification theorem for compact surfaces” - by Jean

Gallier, Dianna Xu, 2013.
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3.1. The technique. The technique of cutting and pasting has been used, which

involve the following steps, see [2]:

(i) one starts with an arbitrary compact orientable surface S which in general

has Euler characteristic χ(S) ≤ 2. One uses the following characterisation of the

2-sphere, S2 (∼= will mean topological equivalence):

S ∼= S2 ⇔ χ(S) = 2⇔ every simple cloesd curve on S separates it
(The Jordan curve theorem).

Figure 4: Separating and nonseparating curves.

(ii) If S is not equivalent to S2, there must be at least one simple closed curve

which will not separate S (see the figure - “Separating and nonseparating curves”).

(iii) Take such a nonseparating curve C on S, thicken it (i.e. take a tubular

or a regular neighbourhood of C in S) to get N , which will be a cylinder with

two circle boundary components (see the figure - “Cylinder and Möbius band”),

if the surface is orientable or two sided (like a torus ), or a Möbius band, with one

circle boundary (see the figure - “Cylinder and Möbius band”), if the surface is

nonorientable or one sided (like Klein’s bottle).

Figure 5: Cylinder and Möbius band.

(iv) Remove the interior of N and glue two copies (or one copy) of 2-disks

“suitably” along the bounding pair of circles (or the bounding circle). The resulting

surface S∗ will remain a compact orientable (or nonorientable) surface.

Figure 6: Surgery along a nonseparating curve a.

One says that S∗ is obtained from S by a surgery along C (see the figure -

6 “Surgery along a nonseparating curve”); S∗ is “cobordant” to S, that is, S∗
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together with S forms the boundary of a 3-manifold with boundary, and χ(S∗) >

χ(S).

After doing finite number of such surgeries one gets χ(S∗) = 2, i.e., S∗ ∼= S2.

By doing the reverse surgeries on S2 one therefore recovers S in finitely many

Figure 7: Reverse surgery.

steps (see the figure - “Reverse surgery”). So S is a sphere in which finitely many

hollow handles (or cross caps) are attached.

This idea has been successfully employed to different classification problems

of higher dimensional manifolds of various shades.

3.1. Remark. On a surface (i) any simple closed curve C can always be thickened,

(ii) surgery along C changes the fundamental group and the Euler characteristics.

Each of these is a complete invariant for compact surfaces without boundaries.

4. Classifications of 3-manifolds
Early 20 th Century - the beginning

In the beginning of the 20th century a number of different approaches were

taken to address the problem of classification of 3-manifolds, see [56].

(i) (Combinatorial approach of Moise) (see [70, 56]): All 3-manifolds can be

constructed by gluing tetrahedra along their faces.

(ii) (Heegaard Gluing approach) (see [32, 56]): S3 is obtained by gluing two

solid 3-balls (or solid tori) along their boundaries (see the figure on the next page

- “Heegaard-gluing: 3-sphere (i) is the union of two solid 3-balls glued along their

common boundary (the equator) (ii) is also the union of two solid tori glued along

their boundaries”):

Consider the three dimensional sphere S3 and view it as the union S3 =

E3
+ ∪ E3 of two solid 3-balls identified along the boundaries; these are the two

hemispheres of S3 and the equator of the sphere is the common boundary of the

two 3-balls.

Remove a solid torus T 3
1 from the interior of S3. The figure (“Heegaard-gluing:

3-sphere (i) is the union of two solid 3-balls glued along their common boundary
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(the equator) (ii) is also the union of two solid tori glued along their boundaries”)

shows the effect of this on the two solid 3-balls E3
+, E

3, creating canals on their

surfaces. Then the remaining part is glued back, which again gives a solid torus

T 3
2 .

Figure 8: Heegaard-gluing: 3-sphere (i) is the union of two solid 3-balls

glued along their common boundary (the equator) (ii) is also

the union of two solid tori glued along their boundaries.

In general any 3-manifold is obtained by gluing two solid n-holed tori along

their boundary, called a Heegaard gluing. Since gluing along boundaries can be

done in many different ways, one can ask which of the manifolds obtained in these

manner are homeomorphic.

(iii) (Dehn Surgery approach)(see [14, 56]): As described in the figure - “Pro-

cess of Dehn surgery” on the next page.

Remove a solid torus T 3
1 from S3.

Call the curve labelled as u as the meridian and the curve labelled as v as the

longitude of the boundary ∂T 3
1 of the solid torus T 3

1 .

We now glue the removed torus T 3
1 back into S3 in such a way that the

meridian curve u is identified to the curve labelled u+ v on the boundary ∂T 3
1 , in

a manner that the small rectangle drawn on the surface on the right is identified

with the small rectangle drawn on the surface on the left.

This gives rise to a 3-manifold M = (S3 \ intT 3
1 ) ∪∼ T 3

1 , where ∼ is the

identification along the boundary torus ∂T 3
1 as described above and is independent
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of the way in which the rest of the torus is identified. M is denoted by (S3\K)(1,1).

Figure 9: Process of Dehn surgery.
Instead of removing an ordinary solid torus one can remove a solid torus neighbour-

hood of an arbitrary knotted circle, M , from S3 and then obtain a new 3-manifold

by gluing back the solid torus neighbourhood by sending u into a given curve a

drawn on the boundary ∂M of M . See the figures - “Dehn surgery” and “Dehn

surgery - contd.”.

Figure 11: Dehn surgery.

12: Dehn surgery - contd.
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This process of removing a solid torus (possibly knotted) from S3 and gluing it

back in a different way to get a new 3-manifold is known as Dehn Surgery.

Example : (i) Dehn constructed the Poincaré homology 3-sphere (S3 \
K)(2,3) from the standard 3-sphere S3 by performing Dehn surgery along the trefoil

knot (see the figure - “Trefoil knot”) embedded in S3.

Figure 10: Trefoil knot.

(ii) (S3\K)(1,0) is the standard 3-sphere S3.

(iii) There are infinitely many homotopy types of homology 3-spheres.

4.1. Theorem (Likorish, Wallace):(see [88, 49, 50, 118]). All closed, orientable

3-manifolds can be obtained by performing Dehn surgery on links (a link is a

collection of knots which do not intersect, but which may be linked (or knotted)

together) in the standard 3-sphere.

4.2. Remark. This result is same in spirit as the theorem about surfaces, and in

fact can classify all “Seifert fibered spaces” (these are 3-manifolds together with a

“nice” decomposition as a disjoint union of circles) (see [95]), but we are not in so

comfortable a position to ascertain when two such manifolds are homeomorphic

(This is an open question even today.)
5. Classification of 3-manifolds- 1950’s and 1960’s

We begin by stating the following:

5.1. Theorem (Dehn’s lemma, 1910; [14, 22]). A piecewise-linear map of a disk

into a 3-manifold, with the map’s singularity set in the disc’s interior, implies the

existence of another piecewise-linear map of the disc which is an embedding and

is identical to the original on the boundary of the disc.

5.2. Remark. This theorem was thought to be proven by Max Dehn (1910), but

Hellmuth Kneser (1929) (see [47]) found a gap in the proof.

The status of Dehn’s lemma remained in doubt until Christos Papakyriakopou-

los (1957) (see [79, 80]) proved it using his “tower construction” (constructing a

tower of covering spaces). In 1958, Arnold Shapiro and J.H.C. Whitehead gave a

substantially simpler proof, and an extension of Dehn’s lemma (see [97]).

Papakyriakopoulos also proved the loop and sphere theorems.

5.3. Theorem (Loop Theorem). (see [79, 80, 22, 32]) If there is a map f :

(D2, ∂D2) → (M,∂M) with f |∂D2 not nullhomotopic in ∂M , then there is an

embedding with the same property.

5.4. Theorem (Sphere Theorem). (see [79, 80, 22, 32]) Let M be an orientable

3-manifold such that π2(M) is not a trivial group. Then there exists a non-zero

element in π2(M) having representative that is an embedding S2 ↪→M .



Member's copy - not for circulation 

CLASSIFICATION OF MANIFOLDS, DIFFERENT SHADES 21

5.5. Definition. (see [22, 32]) An incompressible surface in a 3-manifold is a two

sided embedded surface of genus ≥ 1 whose fundamental group maps injectively

into the fundamental group of the manifold (something like non separating curve

in a surface of genus ≥ 1).

5.6. Remark. Wolfgang Haken showed (see [25, 22, 32]) that if a 3-manifold contains

an incompressible surface, the manifold can be simplified by cutting along the

surface (something like doing surgery on a surface along a non separating curve to

simplify the surface).

5.7. Definition. A 3-manifold is called a Haken manifold if it contains a (properly)

embedded incompressible surface.

5.8. Remark. (i) Haken sketched out a proof of an algorithm to check if two Haken

manifolds were homeomorphic or not. His outline was filled in by Waldhausen,

Johannson, Hemion, Matveev, et al. (see [112, 39, 31, 55])

(ii) Since there is an algorithm to check if a 3-manifold is Haken (cf. Jaco-

Oertel [36]), the basic problem of recognition of 3-manifolds can be considered to

be solved for Haken manifolds.

6. Classification of n-manifolds and algebraic topology

As we have seen earlier that in the classification of surfaces fundamental group,

Euler characteristics and of course orientability gave complete invariants. These

are algebraic topological invariants of the surfaces. As we go for manifolds of

higher dimensions more and more algebraic topological invariants will come into

play. Further development on the problem of classification of manifolds therefore

depended on the development of algebraic topology which was going on side by

side, specifically,

(Co)homolgy theory and cohomology operations has been developed by Alexan-

der, Cěck, Steenrod, Whitney among others, (see eg. [100, 30, 108, 102, 103]),

Vector bundles and characteristic classes has been developed by Hopf, Pontr-

jagin, Steenrod, Stiefel, Whitney among others, (see eg. [69, 104, 33]),

Morse theory and homotopy theory has been developed by Morse and White-

head, (see eg. [60]).

7. Classification of n-manifolds, n > 4 - 1950’s

Pontrjagin’s and Thom’s cobordism theory (see [109, 84]) gave rise to a new

shade of classification problem and a new (co)homology theory.

7.1. Definition. Two compact manifolds of same dimension are cobordant if they

together form the boundary of a compact manifold of one dimension higher.

Cobordism classes form a group under addition defined by disjoint union of

manifolds and a ring under addition together with a multiplication defined by

cartesion product of two manifolds, barring some technical details. Pontrjagin-
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Thom studied cobordism classification by converting cobordism into a homotopy

problem and analyzing the latter (see [109, 105]).

Cobordism classes were characterized by algebraic invariants like Stiefel-

Whitney numbers, Chern numbers, Pontrjagin numbers, index, etc. (see [109,

105]).

J. P. Serre’s determination of homotopy groups of spheres by using the machi-

nary of spectral sequences of a fibration (see [96, 100, 108, 30]) gave a big boost

to the computation of framed cobordism ring of framed manifolds which by virtue

of the Thom-Pontrjagin isomorphism is isomorphic to the stable homotopy group

of spheres (see [65, 84, 105]).

Further development of homotopy groups of unitary and orthogonal groups

(Bott’s periodicity theorem) (see [6, 7, 8, 33]) helped in the determination of more

general cobordism rings by Thom, Milnor, Wall etc. (see [105]).

Some sample results are as follows (see [109, 61, 115, 105]):

Oriented cobordism ring modulo torsion (that is tensor product of the ring

with rationals) is a polynomial algebra generated by the cobordism classes of

complex projective spaces.

Full oriented cobordism ring, unoriented cobordism ring, etc. have also been

completely determined as graded algebras with generators which are cobordism

classes of real projective spaces, Dold manifolds, Milnor manifolds, Wall manifolds

(will be defined a little later).

Stong has given an exhaustive survey of the cobordism classification of different

classes of manifolds in [105].

8. h-cobordism and the breakthrough
Stephen Smale and others considered h-cobordism (see [98, 62]):

8.1. Definition. Two manifolds are h-cobordant if they are cobordant and each is

deformation retract of the third manifold.

8.2. Theorem (h-cobordism theorem, proved by Smale). (see [98, 62]) Two simply

connected smooth manifolds of dimension ≥ 5 are h-cobordant if and only if they

are diffeomorphic (in fact the cobordism is a cylinder).

Technique of Morse theory or handle decomposition of the h-cobordism and

simplification of this decomposition lead to the proof of the theorem.

This theorem lead to a proof of higher dimensional ≥ 5 Poincaré’s conjecture:

Any homotopy n-sphere is homeomorphic to the standard n-sphere (see [99, 101,

76]).

The crux of Smale’s proof was

8.3. Theorem (Simply-connected Whitney’s lemma). (see e,g, [22, 90]) P p, Qq ⊂
Mm, p + q = m oriented submanifolds, P,Q intersects transversally in a finite

number of points. Let x, y ∈ P ∩ Q with opposite algebraic intersection numbers
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(P,Q)x = −(P,Q)y. Then, if p ≥ 3, q ≥ 3 and π1(M) = 0, or p = 2, q ≥ 3 and

π1(M \Q) = 0, there is an isotopy of M carrying P to P ′ which also intersects Q

transversally in a finite number of points such that P ′ ∩Q = P ∩Q \ {x, y}. The

isotopy has support in a compact set K which does not meet other intersection

points (i.e. the isotopy keeps M \ K fixed) (See the figure - “Whitney trick to

remove pair of points with opposite signs”).

Figure 13: Whitney trick to remove pair of points with opposite signs.

Whitney’s lemma depends on the following:

8.4. Theorem (Existence of embedded disks, dim M ≥ 5). Suppose f : D2 →
Mn, n ≥ 5 is a smooth map such that {x ∈ D2 | f−1f(x) 6= {x}} ∩ ∂D2 = ∅.
Then there is a smooth embedding f ′ : D2 → Mn with f ′ |∂D2= f |∂D2 and f ′ is

homotopic to f rel ∂D2.

8.5. Theorem (Existence of immersed disks, dim M = 4). Suppose f : D2 →M4

is a smooth map such that {x ∈ D2 | f−1f(x) 6= {x}} ∩ ∂D2 = ∅. Then there is a

smooth immersion f ′ : D2 → Mn with f ′ |∂D2= f |∂D2 and f ′ is homotopic to f

rel ∂D2 and f ′ has only double points.

8.6. Remark. (i) The above theorem says that an embedded circle S1 ↪→Mn, n ≥
5, bounds a smooth embedded disk if and only if it is homotopic to a constant

map.

(ii) The last theorem on existence of immersed disks in dim 4 helped Casson

and Freedman to build a Smale type theorem in dimension 4 which we will mention

later.

(iii) If n = 3 this kind of freedom of movement is not available, for example,

in the figure - “Failure of Whitney trick in dimension 3”, the embedded (blue,

knotted) circle in (S3 \ red, unknotted circle) can be shrunk to a point in (S3 \
red, unknotted circle) (the bounding disk overlaps itself), but it does not bound

an embedded disk in (S3 \ red, unknotted circle) (see [66]).

Figure 14: Failure of Whitney trick in dimension 3.



Member's copy - not for circulation 

24 HIMADRI KUMAR MUKERJEE

9. Classification of n-manifolds, n > 4 - 1960’s

By a result of A. A. Markov (and S.P. Novikov) one cannot classify all mani-

folds of dimension ≥ 4 upto homeomorphism (and hence upto diffeomorphism and

pl-homeomorphism) (see Markov’s result [52] in Russian and S.P. Novikov’s result

in the appendix of [111]).

If one can give a construction which to any finite presentation < S|P > of a

group associates a n-manifold M(S, P ), n ≥ 4, in such a way that π1(M(S, P )) is

isomorphic to the group defined by the presentation < S|P >, and two such man-

ifolds are homeomorphic if and only if they have isomorphic fundamental groups,

then one can construct a class of n-manifolds, n ≥ 4, for which the homeomor-

phism problem is equivalent to the isomorphism problem for finitely presented

groups, and is therefore unsolvable. Consequently classification of higher dimen-

sional manifolds is not to classify all the manifolds but subclasses of manifolds. In

fact, one fixes a manifold X and considers the class hT (X) of all manifolds which

are of the same homotopy type as X, and then classifies manifolds belonging to

hT (X), upto homeomorphism (diffeomorphism and pl-homeomorphism).

Classification problems as mentioned above have been initiated in 1960’s by

Milnor with the discovery of “Exotic diffentiable structure of S7” (see [67]). Sub-

sequent work by Milnor-Kervaire on groups of homotopy spheres led to “Classifi-

cation of homotopy spheres” (see [44, 68, 67]).

9.1. Classification of homotopy spheres by Milnor, Milnor-Kervaire.

9.1. Definition (see [44, 68, 67]). Let hTDiff (Sn) be the set of all oriented diffeo-

morphism classes of closed smooth homotopy n-spheres. hTDiff (Sn) forms a com-

mutative monoid under the connected sum operation. This monoid is actually a

finite abelian group except possibly when n = 4. Let hTDiff (Sn)bp ⊂ hTDiff (Sn)

be the subgroup represented by homotopy spheres that bound “parallelizable”

manifolds (manifolds with trivial tangent bundles).

This subgroup fits in a left short exact sequence:

(1) 0→ hTDiff (Sn)bp → hTDiff (Sn)→ πSn/imJ,

J : πn(SO)→ πSn being the stable Whitehead J-homomorphism. (see Whitehead,

George W., Elements of homotopy theory, GTM, Springer,(1978).)

9.2. Remark. (see [44, 68, 67]) hTDiff (Sn)bp is the best understood part of the

group hTDiff (Sn).

9.3. Theorem. (see [44, 68, 67]) For n 6= 4 the group hTDiff (Sn)bp is finite cyclic

with an explicitly known generator. In fact this group is:

(i) trivial when n is even,

(ii) either trivial or cyclic of order two when n = 4k − 3, and

(iii) cyclic of order 22k−2(22k−1 − 1) numerator
(

4Bk

k

)
when n = 4k − 1 > 3.
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9.4. Remark (see [44, 68, 67]). This last number depends on the computation of the

order |imJ4k−1| of the image of J4k−1. Bk stands for the kth Bernouli’s number.

9.5. Remark (see [44, 68, 67]). If n = 2q − 1, an explicit generator for the

hTDiff (S2q−1)bp can be constructed using one basic building block, namely the

total space E2q of tangent disk q-bundle of the q-sphere Sq, which are paralleliz-

able 2q-dimensional manifolds with boundary, by plumbing construction of the

following type, where in 2 represents plumbing of two copies of E2q, constructed

by pasting across each other, so that their central q-spheres intersect transversally

with intersection number +1.

1. E2q
1 2 E2q

2

2. E2q
1 2 E2q

2 2 E2q
3 2 E2q

4 2 E2q
5 2 E2q

7 2 E2q
8

2

E2q
6

9.6. Remark (see [44, 68, 67]). The result of plumbing is a smooth parallelizable

manifold with corners. After straightening these corners we obtain a smooth man-

ifold X2q with smooth boundary.

For q odd, one uses the first diagram, and for q even one uses the second

diagram.

In either case, if q 6= 2, the resulting smooth boundary ∂X2q will be a homo-

topy sphere representing the required generator of hTDiff (S2q−1)bp .

The case q = 2 is exceptional since ∂X4 has only the homology of the 3-sphere,

S3.

In all other cases where hTDiff (Sn)bp is trivial, the boundary will be diffeo-

morphic to the standard n-sphere, Sn.

The left exact sequence (1) can be complemented in the following cases:

9.7. Theorem (see [44, 68, 67]). For n 6≡ 2(mod 4), every element of the stable nth

homotopy group of sphere, πSn , can be represented by a topological sphere. Hence

the left exact sequence (1) takes the more precise form

(2) 0→ hTDiff (Sn)bp → hTDiff (Sn)→ πSn/imJ → 0

However, for n = 4k − 2, it extends to an exact sequence

(3) 0→ hTDiff (S4k−2)bp → hTDiff (S4k−2)→ πS4k−2/imJ
Φk→ Z/2→

hTDiff (S4k−3)bp → 0.

9.2. The procedure of Surgery in higher dimensions.

9.8. Definition (see [59, 44, 68, 67]). Let Mn be a closed manifold. Let Sp ×
Dn−p ⊂M be an embedding. Note that ∂(Dp+1×Dn−p) = Sp×Dn−p⋃Dp+1×
Sn−p−1 and ∂(Sp ×Dn−p) = Sp × Sn−p−1 = ∂(Dp+1 × Sn−p−1).
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If we remove from M the interior of Sp × Dn−p and attach Dp+1 × Sn−p+1

along the boundary Sp×Sn−p−1 then we obtain a new manifold M ′ = M\int(Sp×
Dn−p)

⋃
Sp×Sn−p−1 Dp+1 × Sn−p−1.

M ′ is said to be obtained from M by a surgery of type (p+ 1, n− p).
9.9. Remark (see [59, 44, 68, 67]). It follows clearly that M is obtained from M ′

by a surgery of type (n − p, p + 1). M and M ′ are cobordant; the cobordism

being W = M × I
⋃

Dp+1×Dn−p, where the handle Dp+1×Dn−p is attached to

M × {1} along Sp × Dn−p (see figures “solid handle”, and “attaching 1-handles

and 2-handles”).
By handle decomposition of a cobordism (see [67]) one also knows that if two

manifolds are cobordant then one can be obtained from the other by a sequence

of surgeries.

Figure 15: solid handle.

Figure 16: attaching-1-handles-and-2-handles.

Suppose α ∈ πp(M) and α = [i] with i : Sp → Mn is the restriction of an

embedding Sp ×Dn−p ↪→M to Sp × 0. Let M ′ be obtained from M by a surgery

of type (p+ 1, n− p) performed on this Sp ×Dn−p. Then

9.10. Proposition ([59]). For n ≥ 2p+ 2 we have

πq(M
′) ∼=

{
πq(M) if q < p

πp(M)/H if H ≤ πp(M), and α ∈ H
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9.11. Remark ([59]). Thus performing a surgery of type (p+ 1, n− p) on M with

p+ 1 ≤ n
2 kills the class αεπp(M) represented by Sp ×Dn−p.

9.12. Question. Given an arbitrary element α ∈ πp(Mn) with 2(p+1) ≤ n, when

can it be killed by surgery ?

In other words we want to know when can α be represented as a restriction

to Sp × 0 of an embedding Sp ×Dn−p ⊂Mn. The answer lies in the following:

9.13. Theorem ([59]). If n ≥ 2p+1 , then α = [i] ∈ πp(M) can be killed by surgery

if and only if i∗τM is trivial.

9.14. Remark ([59]). Not every homotopy class (below middle dimension) could

be killed for an arbitrary manifold.

9.15. Example ([59]). Let M = CP2m. Then wm2 [CP2m] 6= 0. where as for

any two-connected manifold N wm2 [N ] = 0. So CP2m is not cobordant to a 2-

connected manifold (X is called n-connected if all k th homotopy groups 1 ≤ k ≤ n,

are zero).

9.16. Definition (see [59, 44, 68, 67]). A manifold Mn is called S-parallelizable

(or a π-manifold) if τM ⊕O1
M is a trivial bundle.

9.17. Example. Every sphere is S-parallelizable.

9.18. Remark. Mn is S-parallelizable if and only if its normal bundle in Rn+k,

k > n is trivial.

The following theorem gives a positive answer to the question of killing homo-

topy groups below middle dimension by surgery.

9.19. Theorem (see [59, 44, 68, 67]). (Surgery below middle dimension). Let Mn

be an S-parallelizable manifold of dimention n ≥ 2p + 1. Then every homotopy

class α ∈ πp(M) is represented by some embedding i : Sp × Dn−p ↪→ M such

that the manifold M ′ obtained by surgery on M of type (p + 1, n − p) is also

S-parallelizable.

9.20. Corollary (see [59, 44, 68, 67]). Any compact S-parallelizable manifold Mn

is cobordant to a [n2 − 1]-connected S-parallelizable manifold.

9.21. Remark (see [59]). (i) Every S-parallelizable manifold is a boundary (i.e

cobordant to a sphere).

(ii) Converse of the above statement is not true.

9.22. Example (see [59]). For example CP2 ∪ (−CP2) is a boundary but is not

S-parallelizable.

9.23. Remark. (i) Theorem 9.19 and Corollary 9.20 tell us that one can perform

surgery below middle dimension successfully. If one succeeds to do surgery in the

middle dimension to change the given S-parallelizable manifold Mn upto cobor-

dism to a [n2 ]- connected S-parallelizable manifold, then the resulting manifold

becomes, by Poicaré duality, a homologically trivial manifold.
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(ii) Surgery in the middle dimension is however not always possible and the

main hard work in surgery theory lies in the determination of the obstruction to

do so.

(iii) The work of Milnor and Kervaire ([59, 44, 68, 67]) can be consulted for

further details.

9.3. Surgery in higher dimensions - surgery on maps. To extend the work

initiated by Milnor and Kervaire ([59, 44, 68, 67]) for manifolds other than spheres

a more general set-up was employed. We very briefly introduce some of these set-

up and state the main results obtained using these. In what follows let f : Mn → A

be a map of degree one between compact oriented n-dimensional manifolds.

9.24. Definition (see [11]). An element α ∈ πp+1(f) := πp+1(mapping cone of f)

is represented by a pair of maps (i, i′) appearing in the following diagram :

Sp
i→Mn

∩ ↓ f

Dp+1 i′→ A

9.25. Definition (see [11]). A normal map is a pair (f, b) given by the commutative

diagram:

νM
b−→ ξ

↓ ↓

M
f−→ A.

In this diagram the left vertical map is the “stable normal bundle over M”, the

right vertical map is the “a vector bundle over A”, and the top horizontal map is

“the map of bundles covering the degree one map f” (see [104, 33, 69] for bundle

theory).

9.26. Definition (see [11]). A normal cobordism from (f, b) to another (f ′, b′) is

a commutative diagram:

νW
B−→ ξ × I

↓ ↓
W

F−→ A× I,
W being the cobordism between M and M ′, such that F |M = f, B|νM =

b, F |M ′ = f ′, B|νM ′ = b′.

9.27. Theorem (see [11, 116]). Let (f, b) be a normal map with target A having

a vector bundle ξ over it. Let α ∈ πp+1(f) with 2p ≤ n. Then α determine a

regular homotopy class of immersions of Sp ×Dn−p in int M. We can do surgery

on α so as to obtain (f ′, b′) normally cobordant to (f, b) if this class contains an

embedding.

9.28. Corollary (see [11, 116]). If 2p < n. we can do surgery on any α ∈ πp+1(f).
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9.29. Theorem (see [11, 116]). If 2p ≤ n we can make f p-connected by a finite

number of surgeries on homotopy classes α in dimension ≤ p.

9.30. Remark. Recall the remark made earlier that surgery in the middle dimension

is not possible unless the obstruction to do the surgery vanishes. In cases when

the manifolds concerned are simply connected the obstruction to do surgery lie

either in the groups Z or Z/2 and are detected by “the index” which is an integer,

or “the Arf-Kervaire invariant” which is an integer modulo 2.

The following theorem give a description of what can be achieved by surgery

on simply connected manifolds.

9.31. Theorem (see [11, 116]). (Simply-connected surgery obstructions) Let (f, b)

be a normal map, f : (Mn, ∂Mn) → (X,Y ), b : ν → ξ as usual, such that f |∂M
induces an isomorphism on homology. There is defined an invariant σ(f, b), called

surgery obstruction for (f, b),

σ(f, b)


= 0 if n is odd,

∈ Z if n = 4k, and

∈ Z/2 if n = 4k + 2,

and such that σ(f, b) = 0 if (f, b) is normally cobordant to a map inducing iso-

morphism on homology.

9.32. Theorem (see [11]). [Fundamental theorem of simply-connected surgery] Let

(f, b) be a normal map, f : (Mn, ∂Mn)→ (X,Y ), b : ν → ξ as usual and suppose

1. f |∂M induces isomorphism in homology,

2. X is 1-connected,

3. n ≥ 5.

Then,

(a) if n is odd then (f, b) is normally cobordant rel Y to (f ′, b′) with f ′ : M ′ →
X a homotopy equivalence,

(b) if n = 2k, (f, b) is normally cobordant rel Y to (f ′, b′) with f ′ : M ′ → X a

homotopy equivalence if and only if σ(f, b) = 0

9.33. Theorem (see [11]). [Plumbing theorem] Let (X,Y ) = (Dn, Sn−1). If n =

2k > 4, then there are normal maps (g, c), g : (M,∂M) → (Dn, Sn−1), c : νk →
εk = trivial bundle, with g|∂M a homotopy equivalence and with σ(g, c) taking on

any desired value.

It is proved by a technique called “plumbing” as mentiobed earlier.

10. Classification of n-manifolds, n > 4 - 1970’s & Further
development

The development made by Kervaire-Milnor (see [44]) and Browder-Novikov

(see [11, 77, 78]) paved the way to develop a comprehensive technology of classi-

fying those CAT (= DIFF, PL or TOP) manifolds upto CAT equivalence which
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are “simple homotopy equivalent” to a given fixed CAT manifold by Browder-

Novikov-Sullivan-Wall-Kirby-Siebenmann (see [11, 106, 116, 45]). Roughly, two

manifolds are simple homotopy equivalent if one can be obtained from the other

by a finite sequence of collapses and extensions (see [120, 63, 13]).

The technology of Surgery theory analyzes the CAT-equivalence classes of

manifolds simple homotopy equivalent to a given manifold by relating it to groups

which are more computable (“normal cobordism group”) and analyzing this rela-

tion more closely (in some suitable sense).

10.1. Definition. A homotopy CAT-structure of the manifold X is a pair (M,f),

where (M,∂M) is a CAT-manifold with boundary and f : (M,∂M)→ (X, ∂X) is

a simple homotopy equivalence with f |∂M : ∂M → ∂X a CAT-equivalence.

(M,f) and (M ′, f ′) are equivalent if there is a CAT-equivalence h : (M,∂M)→
(M ′, ∂M ′) for which the maps f ′ ◦h and f are homotopic relative to the boundary

∂M . hTCAT (X) denotes the set of these equivalence classes.

hTCAT (X) is called the Structure Set, or the Set of homotopy CAT-

Structures on X. This is a pointed set with base point (X, idX), and is the set

which we intend to determine.

10.1. Method of Determination of hTCAT (X), The Surgery Exact

Sequence. Determination of hTCAT (X) involves fitting it into an exact sequence,

the Sullivan-Wall-Kirby-Siebenmann surgery exact sequences (see [116, 45])

involving more algebraic and computable objects:

(S − E − S) : → Ln+1(Zπ1(X))
δ→ hTCAT (X)

η→ [X,G/CAT ]
θ→ Ln(Zπ1(X)),

and then:

STEP 1. : To determine the Normal invariants Nn(X) ∼= [X,G/CAT ].

Nn(X) = (Normal) cobordism classes of triple (M,f, Fr), where f : M → X

be a map of degree one, i.e. f∗([M ]) = [X], and such that if ξ is the CAT-tangent

bundle over X, τM ⊕ f∗ξ is trivial, and Fr is a choice of trivialization of τM ⊕ f∗ξ
(equivalently, normal cobordism classes of normal maps (f, b) as described earlier).

[X,G/CAT ] = Equivalence classes of stable CAT-bundle over X which is

“fibre homotopically trivial”.

10.2. Theorem (see [106, 116, 45]). If K(A,n) denote “Eilenberg-MacLane spaces”

(see e.g. Spanier [100]), then cohomology classes L and K defined by Sullivan gives

the following isomorphism :

G/TOP(2)
∼=
∏

K(Z/2, 4i− 2)×K(Z(2), 4i), i ≥ 1.

Similarly, the “Pontrjagin character” (see e.g. Husemoller [33]) gives the following

isomorphism :
G/TOP [1/2] ∼= BO[1/2].
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Here X(2) means “localization” of X at the prime 2 and X[1/2] means “localiza-

tion” of X away from the prime 2. (for localization of spaces see e.g. Arkowitz

[1], Sullivan [107]).

As a consequence of this the normal invariants for a manifold X can be cal-

culated using the following “fibre square”:

G/TOP −→ G/TOP(2)

↓ ↓

G/TOP [1/2] −→ G/TOP(0)

which gives by definition, the following exact sequence:

0→ [X,G/TOP ]→ KO0(X)[1/2]×⊕
H4i−2(X;Z/2)⊗H4i(X;Z(2))→

⊕
H4i(X;Q)→ 0.

Using this exact sequence and “Atiya-Hirzebruch spectral sequence” (see e.g.

Switzer(1975)) to calculate KO0(X)[1/2] one can compute the normal invariants.

STEP 2 : To determine Wall’s surgery obstruction groups Ln(Zπ1(X))

(see [116]).

Before defining these groups we recall the remark made earlier that surgery in

the middle dimension is not possible unless the obstruction to do the surgery van-

ishes. The Wall surgery obstruction groups are the the groups in which these ob-

structions lie when the manifolds concerned are not necessarily simply

connected. For simply connected manifolds these groups coincide with the simply

connected surgery obstruction groups described earlier in the Theorem 9.31 and

Theorem 9.32, see also [11].

Let Kk(M) := πk+1(f), called the (surgery) kernel complex. It is a Zπ1(X)-

module, where Zπ1(X) is a ring with involution. The homology intersection form,

λ, and self intersection form, µ, determine a triple (Kk(M), λ, µ) which is a (−1)k-

hermitian form on Kk(M) over Zπ1(X).

Case I : Dimension of X is n = 2k :

Wall’s even dimensional surgery obstruction group L2k(Zπ1(X)) is the “Witt

group” of stable isomorphism classes of (−1)k-hermitian forms over Zπ1(X), where

stability is with respect to addition of “hyperbolic forms” (see [116, 64]).

Case II : Dimension of X is n = 2k + 1 :

Wall’s odd dimensional surgery obstruction group L2k+1(Zπ1(X)) is stable

unitary group of automorphisms of hyperbolic (−1)k-forms over Zπ1(X).

The even dimensional Wall’s groups are analogous to the algebraic

K0(Zπ1(X))-groups, and odd dimensional Wall’s groups are analogous to the

algebraic K1(Zπ1(X))-groups (see [3]), where instead of (Zπ1(X))-modules we

take Hermitian forms (i.e. (Zπ1(X))-modules with Hermitian forms described

above)
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We give below a selected list of Wall’s surgery obstruction L-groups, in which

π+ is used for the orientable case and π− for the non-orientable case. These groups

are 4-periodic (see [116, 117]).

π± L0 L1 L2 L3

1+ Z 0 Z/2 0

(Z/2)+ 8Z⊕ 8Z 0 Z/2 Z/2
(Z/2)− Z/2 0 Z/2 0

(Z/2⊕ Z/2)+ 4(8Z) 0 Z/2 3(Z/2)

(Z/2⊕ Z/2)− Z/2 0 Z/2 0

π± L0 L1 L2 L3

(Z)+ Z Z Z/2 Z/2
(Z)− Z/2 0 Z/2 Z/2
Z+ ⊕ Z/2+ Z + Z⊕ Z/2 Z⊕ Z Z/2 Z/2⊕ Z/2
Z+ ⊕ Z/2− Z/2 Z/2 Z/2 Z/2
Z− ⊕ Z/2− Z/2 Z/2 Z/2 Z/2
Z− ⊕ Z/2+ Z/2⊕ Z/2⊕ Z/2 0 Z/2 Z/2⊕ Z/2
Z+ ⊕ Z− Z/2⊕ Z/2 Z/2 Z/2 Z/2⊕ Z/2

STEP 3.: To determine the maps in the Sullivan-Wall-Kirby-Siebenmann

exact sequence (S-E-S): η : hTCAT (X)→ [X,G/CAT ] is essentially the forgetful

map or the “Thom-Pontryagin map”.

θ : Nn(X) = [X,G/CAT ] → Ln(Zπ1(X)), “the surgery obstruction map”,

which associates to each triple [M,f, Fr] in [X,G/CAT ] the (surgery) obstruction

in Ln(Zπ1(X)) to make f a simple homotopy equivalence.

δ : Ln+1(Zπ1(X))→ hTCAT (X) is given by the following theorem:

10.3. Theorem. (see [116]) Given x ∈ Ln+1(Zπ1(X)), n+ 1 ≥ 6, there is a map

of cobordism

g : (W,∂−W,∂+W )→ (X × I, (X × 0 ∪ ∂X × I), X × 1)

of degree one and a trivialization Gr of τW ⊕g∗(νX×I) such that θ([W, g,Gr]) = x,

g |∂−W is identity, and g |∂+W : ∂+W → X × 1 ≡ X is a simple homotopy

equivalence.

In the notation of the statement of the above theorem of Wall, define δ(x) =

[g |∂+W ]. If Hk = Bi × Bn−k denote a k-handle, then in the theorem of Wall

above one constructs the manifold (W,∂W ) by attaching handles on X × I along

X × 1,

Wn+1 =

{
X × I ∪ ∪Hi if n+ 1 = 2i

X × I ∪ ∪Hi ∪Hi+1 if n+ 1 = 2i+ 1

where the intersection and self intersection of the attaching maps are determined

by the given element x ∈ Ln+1(Zπ1(X)), n+ 1 ≥ 6
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10.2. Classification of simply connected n-manifolds n > 4 - revisited. For

CAT = PL or TOP the classification for simply-connected manifolds X turned out

to be quite manageable (see e.g. [11, 116]). From the above table of Wall groups

we note the following: If π1(X) = 0, then the Wall’s surgery obstruction groups

are given by

Ln(Z) =


Z if n ≡ 0 mod 4

0 if n ≡ 1 mod 4

Z/2 if n ≡ 2 mod 4

0 if n ≡ 3 mod 4

Therefore, for odd dimensional manifolds, hTCAT (X) = [X,G/CAT ].

For manifolds having dimension of the type 4k, [X,G/CAT ] = hTCAT (X)⊕ Z.
The determination of hTCAT (X) involve the extension problem :

(E) 0→ hTCAT (X)→ [X,G/CAT ]→ Z/2→ 0,

when the dimension of the manifold involved is of type 4k + 2.

11. A Survey of Classification theorems -
Higher (> 4) dimensional manifolds

11.1. Classification theorems for higher (> 4) dimensional simply
connected manifolds - continued. Let CAT = PL or TOP.

11.1. Theorem ([45]). hTTOP (Sn ×Dk, ∂) = 0, if n+ k ≥ 5.

11.2. Theorem ([45]). hTTOP (Sn × Sm) = Ln(Z)⊕ Lm(Z).

11.3. Theorem ([106, 116]). If X = Complex projective space CPn, n > 2, then

hTPL(X) = ⊕iH4i(X;Z)×⊕iH4i−2(X;Z/2), if n is odd,

hTPL(X)⊕ Z = ⊕iH4i(X;Z)×⊕iH4i−2(X;Z/2), if n ≡ 0(mod4)

hTPL(X)⊕ Z/2 = ⊕iH4i(X;Z)×⊕iH4i−2(X;Z/2), if n ≡ 2(mod4).
11.2. Classification theorems for higher (> 4) dimensional non simply

connected manifolds. (i) Lopéz de Medrano [51], and Wall [116] have

determined hTCAT (X) for X = Real projective space, RPn, n > 4.

11.4. Theorem ([51]). The structure set hTPL(RPn) is given by

hTPL(RPn) =


Z⊕ (2l − 2)Z/2, if n = 4l + 1,

Z⊕ (2l − 2)Z/2, if n = 4l + 2,

Z⊕ Z⊕ (2l − 2)Z/2, if n = 4l + 3,

Z⊕ (2l − 1)Z/2, if n = 4l + 4.

(ii) Kharshiladze [42] has determined hTCAT (X) for X = Product of real

projective spaces, RPm × RPn, m+ n > 4, m, n > 0.

11.5. Theorem (([42]). The structure set hTPL(X), where X = RPm × RPn, is

give by

hTPL(X) =


Σr−1
i=1H

4i(X)⊕ Σ4i+2
i>0 (X;Z/2), m+ n = 4r,

m, n = odd,

Σi≥0H
4i(X)⊕ Σi≥0H

4i+2(X;Z/2), m+ n = 4r + 2,

m, n = odd.
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11.6. Theorem ([42]).

hTPL(X) =



Σi>0H
4i(X)⊕ Σi>0H

4i+2(X;Z/2), m = even,

n = odd,

Σi>0H
4i(X)⊕ Σr−1

i=0H
4i+2(X;Z/2), m+ n = 4r + 2,

m, n = even,

Σr−1
i=1H

4i(X)⊕ Σr−2
i=1H

4i+2(X;Z/2), m+ n = 4r,

m, n = even.

(iii) Wall [116] and Kirby-Siebenmann [45] have determined hTCAT (X) for

X = Tori = Tn = S1 × ...× S1, n times.

11.7. Theorem ([116, 45]).

hTTOP (Tn ×Dk, ∂) = 0, for n+ k ≥ 5,

hTPL(Tn ×Dk, ∂) =

{
0, if k 6= 3,

Z/2, if k = 3.
(iv) The author [73] has determined hTCAT (X), CAT = PL and TOP, for X

= Dold manifolds = P (r, s), defined as the quotient (Sr × CP s)/ ∼, where

(x, y) ∼ (x′, y′) if and only if x′ = −x, and y′ = ȳ.

A Dold manifold can also be written as the total space of a fibre bundle over

RP r with fibre CP s:
(∗) CP s incl−→ P (r, s)

proj−→ RP r.
These manifolds form a set of generators of the unoriented cobordism group of

closed smooth manifolds.

(v) The author [75] has determined hTCAT (X), CAT = PL and TOP, for

X = Wall’s manifold Q(r, s), defined as the mapping torus of some homeo-

morphism A : P (r, s)→ P (r, s), of the Dold manifolds.

These manifolds are of importance to cobordism groups of manifolds, and

give rise to and intermediate cobordism group between unoriented and oriented

cobordism groups and was used by Wall for determination of oriented cobordism

ring.

(vi) The author [74] has determined hTCAT (X), CAT = PL and TOP, for X =

Real Milnor manifolds = RHr,s, defined as the codimension 1 submanifold of

RP r × RP s given in terms of the homogeneous coordinates of the real projective

spaces as

RHr,s
def
= {([z0, z1, ..., zr], [w0, w1, ..., ws]) | z0.w0 + z1.w1 + ...+ zs.ws = 0},

assuming that r ≥ s.
A real Milnor manifold can be written as the total space of a fibre bundle

RP r−1 incl−→ RHr,s
proj−→ RP s with fibre RP r−1. This is actually the projec-

tive bundle of the vector bundle γ⊥r : Rr → E⊥ → RP s, which is the orthog-

onal complement in RP s × Rr+1 of the line bundle γ : R → E → RP s, E =

{(x, y) ∈ RP s × Rr+1 | y ∈ x}.
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These manifolds also form a set of generators of the unoriented cobordism group

of closed smooth manifolds.

12. Statements of selected classification results by the author

I am giving statements only for the topological classification, CAT = TOP,

for brevity. The results for PL classification, CAT = PL, can be seen from the

referred papers.

12.1. Homotopy Dold’s manifolds.

12.1. Theorem. [73] (Dold manifolds; TOP Class. theorem (4k + 1)).

P (r, s), r, s > 1, r + 2s = 4k + j, j = 1, or 2, or 3, or 4. Then for k ≥ 1

(Coefficients of integral cohomologies are dropped)

hTTOP (P (r, s)4k+1) ∼=
∑k

i=2
H4i−2(P (r, s);Z/2)⊕

∑k

i=2
H4i(P (r, s)).

12.2. Theorem. [73] (Dold’s manifold; TOP Class. theorem (4k + 2)).
If r ≥ 4, s ≥ 2 then

hTTOP (P (r, s)4k+2) ∼=
∑k

i=2
H4i−2(P (r, s);Z/2)⊕

∑k

i=2
H4i(P (r, s)).

12.3. Theorem. [73] (Dold’s manifold; TOP Class. theorem (4k + 3)+).

hTTOP (P (r, s)4k+3
+ ) ∼= Z⊕

k∑
i=2

H4i−2(P (r, s);Z/2)⊕ Z/2⊕
k∑
i=2

H4i(P (r, s)).

12.4. Theorem. [73] (Dold’s manifold; TOP Class. theorem (4k + 3)−).

hTTOP (P (r, s)4k+3
− ) ∼=

∑k+1

i=2
H4i−2(P (r, s);Z/2)⊕

∑k

i=2
H4i(P (r, s)).

12.5. Theorem. [73] (Dold’s manifold; TOP Class. theorem (4k + 4)+).

hTTOP (P (r, s)4k+4
+ ) ∼=

∑k+1

i=2
H4i−2(P (r, s);Z/2)⊕

∑k

i=2
H4i(P (r, s)).

12.6. Theorem. [73] (Dold’s manifold; TOP Class. theorem (4k + 1)−).

hTTOP (P (r, s)4k+4
− ) ∼=

k∑
i=2

H4i−2(P (r, s);Z/2)⊕ (Z/2)2 ⊕
k+1∑
i=2

H4i(P (r, s)).

12.2. Homotopy real Milnor’s manifolds.

12.7. Theorem. [74] (Real Milnor manifolds; TOP Class. theorem (4k+1)).

RHr,s, r ≥ s > 2, r + s − 1 = 4k + j, j = 1, or 2, or 3, or 4. Then for k ≥ 1,

(Coefficients of integral cohomologies are dropped for typographic convenience)

hTTOP (RH4k+1
r,s ) ∼=

∑k

i=2
H4i−2(RHr,s;Z/2)⊕

∑k

i=2
H4i(RHr,s).

12.8. Theorem. [74] (Real Milnor’s manifold; TOP Class. theorem (4k + 2)).

hTTOP (RH4k+2
r,s ) ∼=

∑k

i=2
H4i−2(RHr,s;Z/2)⊕

∑k

i=2
H4i(RHr,s).
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12.9. Theorem. [74] (Real Milnor’s manifold; TOP Class. theorem (4k+3)+).

hTTOP (RH4k+3
r,s +

) ∼= Z⊕ Z⊕ Z⊕
k∑
i=2

H4i−2(RHr,s;Z/2)⊕
k∑
i=2

H4i(RHr,s).

12.10. Theorem. [74] (Real Milnor’s manifold; TOP Class. theorem (4k+3)−).

hTTOP (RH4k+3
r,s −) ∼=

∑k+1

i=2
H4i−2(RHr,s;Z/2)⊕

∑k

i=2
H4i(RHr,s).

12.11. Theorem. [74] (Real Milnor’s manifold; TOP Class. theorem (4k + 4)).

hTTOP (RH4k+4
r,s ) ∼=

∑k

i=2
H4i−2(RHr,s;Z/2)⊕ (Z/2)2 ⊕

∑k+1

i=2
H4i(RHr,s).

12.3. Homotopy Wall’s manifolds.

12.12. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 1)).

Q(r, s), r, s > 1, r + 2s + 1 = 4k + j, j = 1, or 2, or 3, or 4. Then for k ≥ 1,

(Coefficients of integral cohomologies are dropped)

hTTOP (Q(r, s)4k+1) ∼=
∑k

i=2
H4i−2(Q(r, s);Z/2)⊕

∑k

i=2
H4i(Q(r, s)).

12.13. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 2)).

hTTOP (Q(r, s)4k+2) ∼=
∑k

i=2
H4i−2(Q(r, s);Z/2)⊕

∑k

i=2
H4i(Q(r, s)).

12.14. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 3)−+).

hTTOP (Q(r, s)4k+3
−+ ) ∼=

∑k

i=2
H4i−2(Q(r, s);Z/2)⊕

∑k

i=2
H4i(Q(r, s)).

12.15. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 3)−−).

hTTOP (Q(r, s)4k+3
−− ) ∼=

k∑
i=2

H4i−2(Q(r, s);Z/2)⊕ Z/2⊕
k∑
i=2

H4i(Q(r, s)).

12.16. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 4)−+).

hTTOP (Q(r, s)4k+4
−+ ) ∼=

∑k

i=2
H4i−2(Q(r, s);Z/2)⊕Z/2×Z/2⊕

∑k

i=2
H4i(Q(r, s)).

12.17. Theorem. [75] (Wall’s manifolds; TOP Class. theorem (4k + 4)−−).

hTTOP (Q(r, s)4k+4
−− ) ∼=

∑k+1

i=2
H4i−2(Q(r, s);Z/2)⊕

∑k

i=2
H4i(Q(r, s)).

12.18. Remark. Classification of homotopy Grassmann manifolds and other such

manifolds are worthwhile problems. Calculation for the Grassmannian manifolds

is under way.
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13. Application of surgery exact sequence
in topological rigidity theorem

Before closing the survey on higher dimensional manifolds, we would like to

mention that there have been reformulations of the surgery exact sequence in

terms of algebraic and geometric “L-theory spectra” (see [86, 87, 58]), in which

the surgery obstruction map has been replaced by “L-theory assembly maps”

A∗ : H∗(X,Lh∗(pt))→ Lh∗(X).

Using this reformulation works of Farrell, Jones and many others resulted in prov-

ing many special cases of topological rigidity theorem:

13.1. Theorem. ([19, 20]) Any homotopy equivalance h : (N, ∂N) → (X ×
Ik, ∂(X×Ik)) of compact pairs, which is homeomorphism when restricted to bound-

aries, is homotopic rel ∂ to a homeomorphism. (Here k is an integer, and I =

[0,1]).

A comprehensive survey “Topological Rigidity Problems” is given in

https://arxiv.org/pdf/1510.04139, by R Kasilingam (2015).

14. Classification of 4-manifolds in 1980’s

M. Freedman and S. Donaldson made fundamental advances in the knowledge

about 4-manifolds (see [21, 22, 16]).

As mentioned earlier the success of determination of structure set and (limited)

classification of higher dimensional manifolds was due to the availability of the

Whitney trick, particularly the existence of embedded Whitney 2-discs along which

one can isotope to remove pairs of intersection points with opposite signs. This was

not so complicated for manifolds of dimension more that 4. However for manifolds

of dimension 4 it is an uphill task, as while removing pairs of intersection points

with opposite signs it introduces two further such intersection points, and this

process continues indefinitely and one gets a tower called “Casson handle” (see

e.g. [22]). The credit of Freedman lies in successfully using Casson handles and

doing surgery for 4-manifolds .

Freedman proved:

14.1. Theorem. (see [21, 22]) Homeomorphism classes of simply connected closed

4-manifolds are in one to one correspondence with the set of pairs

{([ω], α) | if ω is even type, then Signature(ω)/8 ≡ α(mod2)}
where [ω] is the isomorphism class of unimodular symmetric bilinear forms on

finitely generated free abelian groups, and α is the Kirby-Siebenmann invariant

(for a M4 as above α(M) ∈ Z/2 such that α(M) = 0 if M × S1 is smoothable;

and α(M) = 1 otherwise.)

For n = 3, 4, one defines a stable structure set ˜hCAT (X) as follows (see [46]):

˜hCAT (X)
0

= hCAT (X), and inductively

˜hCAT (X)
r

= {f ∈ hCAT (X#r(S2 × S2)) | η(f) ∈ Im p∗X},
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where pX : X#r(S2 × S2)/∂X → X/∂X.

There is a natural map ˜hCAT (X)
r

→ ˜hCAT (X)
r+1

, giving one an inductive

system and ˜hCAT (X) is the inductive limit of this system.

For n = 3, 4, this structure set fits into a Surgery exact sequence:

→ Ln+1(Zπ1(X))
δ→ ˜hCAT (X)

η→ [X,G/CAT ]
θ→ Ln(Zπ1(X)),

The failure of surgery is the failure of the natural map ψCAT : hCAT (X) →
˜hCAT (X) to become bijective.

14.2. Remark. Freedman has proved that for simply connected manifolds ψTOP is

bijective and so is the case for manifolds with reasonable fundamental groups, e.g.

Z,Q,Z/2 ∗ Z/2 etc. (see [21, 22]).

Donaldson has shown that ψDIFF is neither injective (surgery fails) nor sur-

jective (s-cobordism theorem fails) (see [16]).

15. Classification of 3-manifolds in 1960 - 2006

With the proofs of Dehn’s lemma and sphere theorem by Papakyriacopoulos

the foundation of further development was laid. Based on this Haken [25], Wald-

hausen [112], Jaco [37, 35], Shalen [37], Johanson [39], gave what is known as the

JSJ decomposition of a closed 3-manifold:

Given a closed 3-manifold, one can cut it along embedded essential 2-spheres

into finitely many irreducible pieces (irreducible means every embedded 2-sphere

bounds a 3-ball).

These irreducible pieces can further be cut along embedded incompressible tori

(incompressible means the inclusion map induces an injection on π1) into finite

collection of compact 3-manifolds with toral boundary each of which is either a

Seifert fibered space or is simple.

Thurston showed that the simple pieces have geometric structure (The Ge-

ometrization conjecture) and proved the conjecture for Haken manifolds (see [110,

94]).

Most of the geometric manifolds were well understood then, except the hy-

perbolic manifolds (that is manifolds admitting Riemannian metrics of constant

negative sectional curvature).

Thurston’s work (see [110]) has indicated that (see [56])

(1) a typical 3-manifold is either topologically simple (topological classification

exits, like Seifert fibre spaces) or possess a hyperbolic structure.

(2) all but finite number of 3-manifolds obtained by performing Dehn surgery

on a given hyperbolic knot ( i.e. a knot in S3 having hyperbolic complement, i.e.

neither a torus nor a satelite knot) possess hyperbolic structure.

The consequence of Thurston’s work is that hyperbolic 3-manifolds are the

most abundant, the most complicated and the most important class of 3-manifolds.

So an approach to understand 3-manifolds topologically is to restrict attention to



Member's copy - not for circulation 

CLASSIFICATION OF MANIFOLDS, DIFFERENT SHADES 39

hyperbolic manifolds. The topological invariants like Euler characteristic, funda-

mental group, homology and cohomology groups are inadequate. So the hyperbolic

structure was needed by Thurston, Meyerhoff, Ruberman, Jeffry Weeks, Colin

Adams and many other mathematicians to define hyperbolic invariants, like The

volume, the Chern-Simon invariant, and the η-invariant for the classification prob-

lem (see [56]). The following theorem of Mostow ensures that these hyperbolic

invariants are topological invariants as well.
15.1. Theorem. (Mostow)(see [72, 18]) If a closed, orientable 3-manifold possess

a hyperbolic structure, then that structure is unique (upto isometry).

The above invariants individually or collectively are still inadequate to provide

complete invariants for the classification of hyperbolic 3-manifolds.

Hamilton and Perelman brought in technique of a completely different shade

not thought of until then using geometric analysis, “Ricci flow with surgery” (some

thing like heat flow which uniformize the temperature after a certain time, like

wise Ricci flow uniformize the Ricci curvature after a certain time) and have given

a proof of the geometrization conjecture of which Poincaré’s conjecture is a con-

sequence (see [81, 82, 83, 71]). Perelman received the Fileds medal for this work.

16. Classification of 3-manifolds - current state of affairs

Hamilton-Perelman’s analytic and geometric approach could dispose off topo-

logical classification of 3-manifolds homotopy equivalent to 3-sphere (it is a sin-

gleton set), the famous Poincaré’s conjecture and the Thurston’s geometrization

conjecture.

However, existence and uniqueness of hyperbolic structure on 3-manifold give

little information about the structure itself. Given a combinatorial description

of a 3-manifold that admits a hyperbolic structure, what can be said about the

geometry of that structure ?

Masur, Minsky [53, 54, 9] and many other mathematicians have been working

and greatly contributing to the connection between geometric, topological and

combinatorial descriptions of hyperbolic 3-manifolds.

Combinatorial objects like surface mapping class groups, curve complexes and

their various relatives like Pants complex, Hatcher Thurston complex, homology

curve complex etc. (see [17, 34, 93, 92, 4, 5, 34, 38]), play very important role in

this project.

Author and Ninthoujam Jiban Singh have contributed in this direction in the

form of the paper “Homology Curve Complex” [38]

The main results of the paper “Homology Curve Complex” are:

16.1. Theorem. [38] Given a closed, connected, orientable 3-manifold M and a

Heegaard splitting M = V ∪
g
V of genus g > 1, there is an algorithm, which runs

in polynomial time, to decide whether M contains a nonseparating, 2-sided, closed

incompressible surface.
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16.2. Theorem. [38] For g > 1, there is an explicit algorithm which takes as

input Σg , a canonical ordered basis B = {a1, · · · , ag, b1, · · · , bg} for the homology

H1(Σg;Z), a pair of vertices α, β of HC(Σg) and returns the distance between

them.

16.3. Theorem. [38] Let M be a closed connected orientable 3-manifold with a

Heegaard splitting (V, V ′; Σg) of genus g > 1. Then for any pair of complete

meridian systems L ={D1, . . . , Dg}, L’ = {D′1, . . . , D′g} for the respective han-

dlebodies V and V ′, the following statements are equivalent: 1) M contains a

non-separating, two-sided, closed incompressible surface; 2) H1(M) is infinite; 3)

The matrix A = (aij), where aij is the algebraic intersection number of Di and

∂D′j , is singular; 4) d∞(Σg) = 0; 5) dH(V, V ′) = 0.
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MODULAR-TYPE TRANSFORMATIONS

AND INTEGRALS INVOLVING THE
RIEMANN Ξ-FUNCTION

ATUL DIXIT

In memory of the great mathematician Hansraj Gupta

Abstract. A survey of various developments in the area of modular-type

transformations (along with their generalizations of different types) and in-

tegrals involving the Riemann Ξ-function associated to them is given. We

discuss their applications in Analytic Number Theory, Special Functions and

Asymptotic Analysis.

1. Introduction

The Jacobi theta function θ(z) :=
∑∞

n=−∞
e2πin2z is one of the most impor-

tant special functions of Mathematics. At the beginning of the last chapter on

theta functions in his book [26, p. 314], Rainville remarks ‘It seems safe to say

that no topic in Mathematics is more replete with beautiful formulas than that on

which we now embark’. In Mathematics theta functions are encountered in Spe-

cial Functions, Partial Differential Equations, Number Theory, and, in general, in

Science in Heat Conduction, Electrical Engineering, Physics etc.

For z ∈ H (upper half plane), the famous theta transformation formula is

given by [5, p. 12]
θ (−1/4z) =

√
−2iz θ(z),

or, equivalently,∑∞

n=−∞
exp

(
πn2/2iz

)
=
√
−2iz

∑∞

n=−∞
exp

(
2πin2z

)
. (1.1)

This implies [5, p. 12]

θ (z/(4z + 1)) =
√

4z + 1 θ(z).

Along with the obvious fact θ(z + 1) = θ(z), this implies that for any γ ∈ Γ0(4),

θ2(γz) = χ−1(d)(cz + d)θ2(z),

* This article is based on the text of the 28th Hansraj Gupta Memorial Award Lecture deliv-

ered at the 83rd Annual Conference of the Indian Mathematical Society-An international Meet

held at Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India during Decemb-

er 12 - 15, 2017.
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where χ−1 is the Dirichlet character modulo 4 defined by χ−1(n) =
(−1
n

)
=

(−1)(n−1)/2. Thus θ ∈ M1/2(Γ0(4), χ−1), that is, the theta function is a weight

1/2 modular form on Γ0(4) twisted by the Dirichlet character χ−1. Even though

Eisenstein, and later Hardy, anticipated the theory of modular forms of half inte-

gral weight k/2, where k is an odd positive integer, a systematic study of such a

theory commenced with a seminal paper by Shimura [30].

Letting z = iα2/2 and β = 1/α, one can easily write (1.1) in a symmetric

form, namely, for Re(α2) > 0, Re(β2) > 0,

√
α

(
1

2α
−
∑∞

n=1
e−πα

2n2

)
=
√
β

(
1

2β
−
∑∞

n=1
e−πβ

2n2

)
. (1.2)

Hardy [20] obtained an integral representation for the left-hand side of (1.2),

namely for Re(α2) > 0,

√
α

(
1

2α
−
∑∞

n=1
e−πα

2n2

)
=

2

π

∫ ∞
0

Ξ(t/2)

1 + t2
cos

(
1

2
t logα

)
dt, (1.3)

and used (1.2) and (1.3) to prove that infinitely many zeros of the Riemann zeta

function ζ(s) lie on the critical line. Note that the integral in (1.3) is invariant if

we replace α by β for αβ = 1. Hence, (1.3) also gives (1.2).

Even though the transformation (1.2) is associated with the modularity of the

theta function θ(z), not all transformations of such type are known to be associated

with modular forms. We begin with the following beautiful example from page

220 of Ramanujan’s Lost Notebook [28].

Theorem 1.1. Define λ(x) := ψ(x) + 1
2x − log x, where ψ(x) is the logarithmic

derivative of the gamma function. Let the Riemann ξ-function be defined by

ξ(s) = (1/2)s(s− 1)π−
1
2 sΓ( 1

2s)ζ(s),

and let
Ξ(t) := ξ(1/2 + it)

be the Riemann Ξ-function. If α and β are positive numbers such that αβ = 1,

then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

λ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

λ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2 t logα

)
1 + t2

dt, (1.4)

where γ denotes Euler’s constant.

Note that [1, p. 259, formula 6.3.18] for | arg z| < π, as z →∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · .

This implies that λ(x) = O(x−2), and hence the series
∑∞
n=1 λ(nα) and∑∞

n=1 λ(nβ) converge.

This formula was first proved in [2] where the authors gave two proofs. Later

in [7], [8], it was obtained as a special case of a more general result which we will
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soon discuss. A yet another proof was given in [6].

A transformation of the form F(z) = F(−1/z), z ∈ H, can be equivalently

written in the form F (α) = F (β), where Re(α) > 0, Re(β) > 0, and αβ = 1.

Indeed, if Im(z) > 0, then letting α = −iz gives Re(α) > 0. Thus, if α, β ∈ C
such that Re(α) > 0 and αβ = 1, then −1/z = iβ, so that Re(β) > 0. Now let

g(w) = h(e2πiw) so that g(−1/z) = g(z) is equivalent to h(e−2πβ) = h(e−2πα).

Now for x > 0, let F (x) = h(e−2πx), so that F (α) = F (β). The process can also be

reversed so that the transformation F(z) = F(−1/z), z ∈ H, is actually equivalent

to F (α) = F (β), where Re(α) > 0, Re(β) > 0 and αβ = 1.

By a modular-type transformation, we mean a relation of the form F (α) =

F (β), αβ = 1. The word ‘modular-type’ is used to indicate that there may be

some such transformations which cannot be made ‘modular’ in the sense that they

may not be associated to a modular form on SL2(Z) or its congruence subgroups.

There are umpteen examples of modular-type transformations in Ramanujan’s

Notebooks [29] as well as in his Lost Notebook [28]. He preferred writing them in

the form F (α) = F (β) over F(z) = F(−1/z), such as the one in (1.4), and even

though he always considered α, β to be positive real numbers, by analytic contin-

uation, one can almost always extend his identities for Re(α) > 0 and Re(β) > 0.

In this survey, we will also discuss more general modular-type transformations

of the form F (z, α) = F (z, β), F (w,α) = F (iw, β), and F (z, w, α) = F (z, iw, β),

where αβ = 1 and i =
√
−1.

Using the theory of Mellin transforms and residue calculus, or some ad-hoc

techniques from special functions, the integrals involving the Riemann Ξ-function

such as the ones in (1.3) and (1.4) can be respectively evaluated to one of the

two expressions in a modular-type transformation such as the ones in (1.2) and

(1.4) and then the corresponding modular-type transformations can be established

through the invariance of the integrals upon replacing α by β. For the results

obtained through this approach, see [2], [3], [6], [7], [8], [9] and [13]. Alternatively,

one might first establish a modular-type transformation and then link it to an

integral involving the Riemann Ξ-function. An indispensable part of this latter

approach is the theory of reciprocal functions, and of self-reciprocal functions.

Since the results obtained through the former approach are already surveyed in

[10], we concentrate on the latter in this survey.

2. Modular-type transformations and integrals of Ξ(t) through

the theory of reciprocal functions
We first begin with a generalization of integrals of the type∫∞

0
f
(
t
2

)
Ξ
(
t
2

)
cos( 1

2 t logα) dt. where f(t) is of the form f(t) = g(it)g(−it) with

g analytic in t, in which the cosine is replaced by a more general class of functions

[14].

Let φ(x) and ψ(x) be two integrable functions on the real line. The functions
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φ and ψ are said to be reciprocal in the Fourier cosine transform if

φ(x) =
2√
π

∫ ∞
0

ψ(u) cos(2ux)du and ψ(x) =
2√
π

∫ ∞
0

φ(u) cos(2ux)du.

Define Z1(s) and Z2(s) by

Γ

(
s

2

)
Z1(s) :=

∫ ∞
0

xs−1φ(x)dx, Γ

(
s

2

)
Z2(s) :=

∫ ∞
0

xs−1ψ(x)dx,

each valid in a specific vertical strip in the complex s-plane. Note that in case

of a non-empty intersection of the two corresponding vertical strips, the Mellin

inversion theorem gives

φ(x) =
1

2πi

∫
(c)

Γ

(
s

2

)
Z1(s)x−sds, ψ(x) =

1

2πi

∫
(c)

Γ

(
s

2

)
Z2(s)x−sds,

where Re(s) = c lies in the intersection. Here and throughout this paper, by
∫

(c)

we mean
∫ c+i∞
c−i∞ . Let

Θ(x) := φ(x) + ψ(x) and Z(s) := Z1(s) + Z2(s) (2.1)

so that

Γ

(
s

2

)
Z(s) =

∫ ∞
0

xs−1Θ(x)dx

for values of s in the intersection of the two strips.

Let 0 < ω ≤ π and λ < 1
2 . If f(z) is such that

i) f(z) is analytic with z = reiθ, regular in the angle defined by r > 0,

|θ| < ω,

ii) f(z) satisfies the bounds

f(z) =

O(|z|−λ−ε) if |z| is small,

O(|z|−b−ε) if |z| is large,

for every ε > 0 and b > λ, and uniformly in any angle θ < ω, then we say

that f belongs to the class K and write f(z) ∈ K(ω, λ, b).

With this set-up, the following result was proved in [14, Theorem 1.2].

Theorem 2.1. Let b > 1 and φ, ψ ∈ K(ω, 0, b) and let Θ and Z be defined in

(2.1). Then we have∫ ∞
0

Ξ(t)

t2 + 1/4
Z(1/2 + it)dt = (π/2)Z(1)− (π/2)

∑∞

n=1
Θ(n
√
π).

This not only gives (1.3) as a special case but also the following general theta

transformation along with a general integral involving Ξ(t) [14, Corollary 1.2].

For αβ = 1, Re(α2) > 0, Re(β2) > 0, and w ∈ C,
√
α

(
(e−

w2

8 /2α)−ew
2

8

∑∞

n=1
e−πα

2n2

cos(
√
παnw)

)
=
√
β

(
(e

w2

8 /2β)− e−w
2

8

∑∞

n=1
e−πβ

2n2

cosh(
√
πβnw)

)
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=
1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇ (α,w, (1 + it)/2) dt, (2.2)

where

∇(x,w, s) := ρ(x,w, s) + ρ(x,w, 1− s),

ρ(x,w, s) := x
1
2−se−

w2

8 1F1

(
(1− s)/2; 1/2;w2/4

)
,

with 1F1(a; c; z) being the confluent hypergeometric function.

Though the first equality in (2.2) is known since Jacobi, the integral involving

Ξ(t) in (2.2) was first found in [9]. In fact the first equality in (2.2) was obtained

by first evaluating this integral to the expression on far left and then utilizing the

fact that the integral is invariant under the simultaneous replacement of α by β

and w by iw. This is one among the three examples of the generalized modular-

type transformation of the form F (w,α) = F (iw, β) studied in [9], the other two

being generalizations of some results of Ferrar [18] and Hardy [21].

In the last section of his paper [27], Ramanujan considered the integral

I1(z, x)=

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos( t2 log x)dt

(z + 1)2 + t2
,

(2.3)

x > 0, and obtained alternate integral representations for it in the regions1 Re(s) >

1, −1 < Re(s) < 1, −3 < Re(s) < −1. In [7, Theorem 1.4], [8, Theorem 1.5], it

was shown that this integral generalizes Ramanujan’s result (1.4), thereby giving

a generalized modular-type transformation of the type F (z, α) = F (z, β), αβ = 1.

This result is given below.

Theorem 2.2. Let −1 < Re(z) < 1. Let λ(z, x) = ζ(z + 1, x) − 1
2x
−z−1 + x−z

−z ,

where ζ(z, x) is the Hurwitz zeta function. Let I1(z, x) be defined in (2.3). Then

for α, β > 0, αβ = 1,

8(4π)
z−3
2

Γ(z + 1)
I1(z, α) = α

z+1
2

(∑∞

n=1
λ(z, nα)− ζ(z + 1)

2αz+1
− ζ(z)

αz

)
= β

z+1
2

(∑∞

n=1
λ(z, nβ)− ζ(z + 1)

2βz+1
− ζ(z)

βz

)
.

The integral I1(z, α) involves a product of the Riemann Ξ-function at two

different arguments, namely Ξ( t+iz2 )Ξ( t−iz2 ). An integral of a similar type, namely,

I2(z, x) :=

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2 t log x

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

dt (2.4)

was studied first in [8]. It is associated to the famous Ramanujan-Guinand formula

that will be discussed in the next section.

These examples motivate us, and indeed as will be seen in the next sec-

tion, it is extremely fruitful to consider a more general integral where the co-

sine is replaced by a general class of functions. This was done in [15]. We

1Each of the representations for Re(s) > 1 and −3 < Re(s) < −1 involves an extra expression

which should not be present. See [7, Theorem 1.2] for the corrected version.
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provide below the set-up given in [15], albeit with one extra parameter w, for

reasons to be clear soon. However, we first note that while the appropriate kernel

with respect to which we study the reciprocal functions for studying integrals of

the form
∫∞

0
f
(
t
2

)
Ξ
(
t
2

)
Z
(

1+it
2

)
dt is the cosine function, the one while study-

ing integrals of the form
∫∞

0
f
(
t
2

)
Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
Z
(

1+it
2

)
dt turns out to be

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx), where Mz(x) := 2

πKz(x) − Yz(x), with

Jz(x), Yz(x) being the Bessel functions of the first and second kinds respectively

and Kz(x) being the modified Bessel function of the second kind.

Let the functions ϕ and ψ be related by

ϕ(x, z, w) = 2

∫ ∞
0

ψ(t, z, w)
(

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx)
)
dt,

ψ(x, z, w) = 2

∫ ∞
0

ϕ(t, z, w)
(

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx)
)
dt.

Let the normalized Mellin transforms Z1(s, z, w) and Z2(s, z, w) of the func-

tions ϕ(x, z, w) and ψ(x, z, w) be defined by

Γ ((s− z)/2) Γ ((s+ z)/2)Z1(s, z, w) =

∫ ∞
0

xs−1ϕ(x, z, w) dx,

Γ ((s− z)/2) Γ ((s+ z)/2)Z2(s, z, w) =

∫ ∞
0

xs−1ψ(x, z, w) dx,

where each equation is valid in a specific vertical strip in the complex s-plane. Set

Z(s, z, w)=Z1(s, z, w)+Z2(s, z, w) and Θ(x, z, w)=ϕ(x, z, w)+ψ(x, z, w), (2.5)

so that

Γ ((s− z)/2) Γ ((s+ z)/2)Z(s, z, w) =

∫ ∞
0

xs−1Θ(x, z, w) dx

for values of s which lie in the intersection of the two vertical strips.

We now define a class of functions which will be used in the theorem below.

Let 0 < ω ≤ π and η > 0. For fixed z and w, let u(s, z, w) be such that

(i) u(s, z, w) is an analytic function of s = reiθ regular in the angle defined

by r > 0, |θ| < ω,

(ii) u(s, z, w) satisfies the bounds

u(s, z, w) =

Oz,w(|s|−δ) if |s| ≤ 1,

Oz,w(|s|−η−1−|Re(z)|) if |s| > 1,

for every positive δ and uniformly in any angle |θ| < ω. Then we say that u

belongs to the class ♦η,ω and write u(s, z, w) ∈ ♦η,ω.

With this set-up, the following result was obtained in [15, Theorem 1.2] (see

also [11, Equation (1.18)].

Theorem 2.3. Let η > 1/4 and 0 < ω ≤ π. Suppose that ϕ,ψ ∈ ♦η,ω, are

reciprocal in the Koshliakov kernel, and that −1/2 < Re(z) < 1/2. Let Z(s, z, w)

and Θ(x, z, w) be defined in (2.5). Let σ−z(n) =
∑
d|n d

−z. Then,
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32

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
Z

(
1 + it

2
,
z

2
, w

)
dt

(t2 + (z + 1)2)(t2 + (z − 1)2)

=
∑∞

n=1
σ−z(n)nz/2Θ (πn, z/2, w)−R(z, w),

where

R(z, w)=πz/2Γ

(
−z
2

)
ζ(−z)Z

(
1+
z

2
,
z

2
, w
)
+π−z/2Γ

(z
2

)
ζ(z)Z

(
1−z

2
,
z

2
, w
)
.

This results in the following corollary.

Corollary 2.4. Let −1 < Re(z) < 1. Let I2(z, x) be defined in (2.4). Then

I2(z, α) = −(π
√
α/32)

(
α
z
2−1π

−z
2 Γ

(
z
2

)
ζ(z) + α−

z
2−1π

z
2 Γ
(−z

2

)
ζ(−z)

−4
∑∞

n=1
σ−z(n)nz/2K z

2
(2nπα)

)
. (2.6)

Further integrals of the type I1(z, x), I2(z, x) are studied in [13] and

[3, Theorem 15.6]. A companion to Theorem 2.3, which evaluates a generalization

of I1(z, x), is also studied in [15, Theorem 1.4].

3. Applications of modular-type transformations and

the integrals of Ξ(t) linked to them

Here we discuss three different applications of modular-type transformations

and the integrals of Ξ(t) associated to them.

3.1. Theory of the generalized modified Bessel function Kz,w(x) and the

generalized modular-type transformations F (z, w, α) = F (z, iw, β), where

αβ = 1. The theta transformation (1.2) can be simply derived by invoking the

Poisson summation formula and the Laplace integral evaluation

e−α
2x2

=
2

α
√
π

∫ ∞
0

e−u
2/α2

cos(2ux) du. (3.1)

In the similar vein, using a generalization of (3.1), namely

e−α
2x2

cos(wx) =
2e−w

2/(4α2)

α
√
π

∫ ∞
0

e−u
2/α2

cosh(wu/α2) cos(2ux) du (w ∈ C),

(3.2)

one gets the general theta transformation in (2.2). Since the inverse Mellin trans-

form of Γ(s) is essentially e−x
2

, one may want to ask if one can obtain an integral

identity similar to (3.1), which renders K0(x) as a self-reciprocal function in a

kernel, since K0(x) is essentially the inverse Mellin transform of Γ2(s). More

generally one may ask the same question for Kz(x). This was already solved by

Koshliakov [23, Equation (8)] who obtained the following remarkable identity for

−1/2 < z < 1/2 2,

2

∫ ∞
0

Kz(2t)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt = Kz(2x). (3.3)

2It is easy to see that this identity actually holds for −1/2 < Re(z) < 1/2.
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For this reason, the kernel cos(πz)M2z(4
√
xt) − sin(πz)J2z(4

√
xt) is called the

Koshliakov kernel in [3] and [15].

Now it is natural to ask if there exists a pair of functions reciprocal in the

Koshliakov kernel, and which gives (3.3) as a special case, similar to how (3.2)

subsumes (3.1). This question was answered in [11]. The interesting thing here

is, while generalizing (3.1) to (3.2) still involves elementary functions, namely

e−α
2x2

cos(wx) and e−α
2x2

cosh(wx), generalizing (3.3) involves a new special func-

tion Kz,w(x), which we call the generalized modified Bessel function. It is defined

for z, w ∈ C, x ∈ C\{x ∈ R : x ≤ 0} and c=Re(s) > ± Re(z) by an inverse Mellin

transform [11], namely,

Kz,w(x) =
1

2πi

∫
(c)

Γ((s− z)/2) Γ((s+ z)/2)

1F1

(
(s− z)/2; 1/2;−w2/4

)
1F1

(
(s+ z)/2; 1/2;w2/4

)
2s−2x−sds. (3.4)

Note that if we let w = 0, the generalized modified Bessel function reduces to the

modified Bessel function Kz(x). It is shown in [11] that Kz,w(x) satisfies a rich

and a beautiful theory like its special case Kz(x). The generalization of (3.3) is

then given in the following theorem [11, Theorem 1.1].

Theorem 3.1. Let − 1
2 < Re(z) < 1

2 . Let w ∈ C and x > 0. Let α and β

be two positive numbers such that αβ = 1. The functions e−
w2

2 Kz,iw(2αx) and

β Kz,w(2βx) form a pair of reciprocal functions in the Koshliakov kernel, that is,

e−
w2

2 Kz,iw(2αx) = 2

∫ ∞
0

β Kz,w(2βt)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt,

β Kz,w(2βx) = 2

∫ ∞
0

e−
w2

2 Kz,iw(2αt)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt.

However, we emphasize here that we stumbled upon this interesting general-

ization of the modified Bessel function while seeking a generalization of a formula

of Ramanujan [28, p. 253] rediscovered by Guinand [19]. For αβ = π2, this formula

is given by
√
α
∑∞

n=1
σ−z(n)nz/2Kz/2(2nα)−

√
β
∑∞

n=1
σ−z(n)nz/2Kz/2(2nβ)

=
1

4
Γ
(z

2

)
ζ(z){β(1−z)/2−α(1−z)/2}+1

4
Γ
(
−z

2

)
ζ(−z){β(1+z)/2−α(1+z)/2}. (3.5)

This formula can be written symmetrically in α and β [8, Theorem 1.4], and is,

in this latter form, an example of the generalized modular-type transformation of

the type F (z, α) = F (z, β). As discussed in [4, p. 23], this identity is equivalent

to the functional equation of the non-holomorphic Eisenstein series on SL2(Z). In

[8], (3.5) was derived from (2.6) whereas in [15], Theorem 2.3 and (3.5) are used

to obtain (2.6).

The elegant generalization of the Ramanujan-Guinand formula, symmetric in

α and β, that was established in [11, Theorem 1.5] is now given.
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Theorem 3.2. Let w ∈ C, z ∈ C\{−1, 1}. For α, β > 0 such that αβ = 1,

√
α

(
4
∞∑
n=1

σ−z(n)n
z
2 e−

w2

4 K z
2 ,iw

(2nπα)−Γ
(z

2

)
ζ(z)π−

z
2α

z
2−1

1F1

(
1− z

2
;

1

2
;
w2

4

)

− Γ
(
−z

2

)
ζ(−z)π z2α− z2−1

1F1

(
1 + z

2
;

1

2
;
w2

4

))

=
√
β

(
4
∞∑
n=1

σ−z(n)n
z
2 e

w2

4 K z
2 ,w

(2nπβ)− Γ
(z

2

)
ζ(z)π−

z
2 β

z
2−1

1F1

(
1− z

2
;

1

2
;−w

2

4

)
−Γ
(
−z

2

)
ζ(−z)π z2 β− z2−1

1F1

(
1 + z

2
;

1

2
;−w

2

4

))
. (3.6)

This is an example of a generalized modular-type transformation of the form

F (z, w, α) = F (z, iw, β), where αβ = 1. Indeed, (3.5) follows at once from (3.6)

by letting w = 0.

Let ∇2(x, z, w, s) be defined by

∇2(x, z, w, s) := ρ(x, z, w, s) + ρ(x, z, w, 1− s), (3.7)

where

ρ(x, z, w, s) := x
1
2−s1F1

(
1− s− z

2
;

1

2
;−w

2

4

)
1F1

(
1− s+ z

2
;

1

2
;−w

2

4

)
.

Using the reciprocal pair (e−w
2/2Kz,iw(2αx), β Kz,w(2βx)), αβ = 1, in Theorem

2.3 along with (3.6), the integral involving Ξ(t) corresponding to the expressions

in (3.6) was obtained [11, Theorem 1.3] as shown below.

Theorem 3.3. Let w ∈ C and −1 < Re(z) < 1. Let Kz,w(x) and ∇2(x, z, w, s) be

defined in (3.4) and (3.7) respectively. If α and β are positive integers satisfying

αβ = 1, then
16

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

) ∇2

(
α, z2 , w,

1+it
2

)
dt

(t2 + (z + 1)2) (t2 + (z − 1)2)

= e−
w2

4
√
α

{
4
∑∞

n=1
σ−z(n)n

z
2 e−

w2

4 K z
2 ,iw

(2nπα)

− Γ(z/2)ζ(z)π−
z
2α

z
2−1

1F1((1− z)/2; 1/2;w2/4)

− Γ(−z/2)ζ(−z)π z2α− z2−1
1F1((1 + z)/2; 1/2;w2/4)

}
.

3.2. A far-reaching generalization of Hardy’s theorem on infinitude of

zeros of ζ(s) on the critical line. This sub-section illustrates an application

of a modular-type transformation associated with an integral involving Ξ(t), this

time the general theta transformation (2.2), in analytic number theory.

As mentioned in the introduction, Hardy [20] proved in 1914 that infinitely

many zeros of ζ(s) lie on the critical line using (1.2) and (1.3). Let

η(s) = π−s/2Γ(s/2)ζ(s) and ρ(t) := η(1/2 + it).

In [14], we generalized Hardy’s result by showing that infinitely many zeros of

an infinite series whose summands involve the completed zeta function ρ(t) on
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bounded vertical shifts lie on the critical line too. The precise theorem is now

given.

Theorem 3.4. Let {cj} be a sequence of non-zero real numbers so that
∑∞
j=1 |cj | <

∞. Let {λj} be a bounded sequence of distinct real numbers that attains its bounds.

Then the function F (s) =
∑∞
j=1 cjη(s + iλj) has infinitely many zeros on the

critical line Re(s) = 1/2.

The above theorem also uses (1.2) and (1.3). Hardy’s result is simply its

special case when all but one c′js are zero and the remaining non-zero cj is 1.

Now a natural question arises - can one generalize the above theorem where one

uses the general theta transformation (2.2) rather than (1.2) and (1.3)? Indeed,

this can be done. It led to the following result that appeared in [12, Theorem 2].

Theorem 3.5. Let {cj} be a sequence of non-zero real numbers so that
∑∞
j=1 |cj | <

∞. Let {λj} be a bounded sequence of distinct real numbers such that it attains

its bounds. Let D denote the region |Re(w)− Im(w)| <
√

π
2 −

√
2
π Re(w)Im(w) in

the w-complex plane. Then for any w ∈ D, the function

Fw(s)=

∞∑
j=1

cjη(s+ iλj)

{
1F1

(
1− (s+ iλj)

2
;

1

2
;
w2

4

)
+1F1

(
1− (s̄− iλj)

2
;

1

2
;
w̄2

4

)}
has infinitely many zeros on the critical line Re(s) = 1/2.

3.3. Asymptotic expansion of an integral involving Ξ(t). The advantage

of having an alternate representation for an expression, that is, an identity, is

that it may give more information about the expression thereby enhancing our

understanding of it. This sub-section bears a testimony to an instance of such a

phenomenon.

In [13, Theorem 6.3], the integral I1(z, x), defined in (2.3), was expressed as

a Laplace transform:

Theorem 3.6. Assume −1 < Re(z) < 1. Define Ω(x, z) by

Ω(x, z) = 2
∞∑
n=1

σ−z(n)nz/2
(
eπiz/4Kz(4πe

πi/4
√
nx) + e−πiz/4Kz(4πe

−πi/4√nx)
)
,

where σ−z(n) =
∑
d|n d

−z. Then for α, β > 0, αβ = 1,

1

2π(z+5)/2
I1(z, α) = α(z+1)/2

∫ ∞
0

e−2παxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

= β(z+1)/2

∫ ∞
0

e−2πβxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx.

Applying Watson’s lemma to the first expression for I1(z, α) involving α led

us to its following asymptotic expansion [17, Theorem 1.10]:

Theorem 3.7. Fix z such that −1 < Re z < 1. As α→∞,

1

π(z+3)/2
I1(z, α) ∼ −Γ(z)ζ(z)α

z−1
2

(2π)z
− Γ(z + 1)ζ(z + 1)

2α
z+1
2 (2π)z
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+ 2α
z+1
2

∞∑
m=0

(−1)m

(2πα)2m+z+2
Γ(2m+ 2 + z)ζ(2m+ 2)ζ(2m+ z + 2).

Oloa’s asymptotic expansion3 [24, Equation 1.5] of I1(0, α), namely,

as α→∞,
1

π3/2
I1(0, α) ∼ 1

2

logα√
α

+
1

2
√
α

(log 2π − γ) +
π2

72α3/2
− π4

10800α7/2
+ · · · ,

can be readily obtained by letting z → 0 in (3.7).

4. Concluding remarks and further questions

We hope to have demonstrated the usefulness of modular-type transformations

along with the associated integrals involving Ξ(t). It would be remarkable if one

is able to associate at least some of them to modular forms.

While it may seem from the variety of examples considered here that one

can always associate an integral involving Ξ(t) to a modular-type transformation,

there are some conjectured modular-type transformations for which there are no

such integral representations. For example, consider the following remarkable

conjecture of Hardy and Littlewood [22, p. 158, Equation (2.516)] suggested to

them by work of Ramanujan.

Conjecture 4.1. Let µ(n) denote the Möbius function. Let α and β be two positive

numbers such that αβ = 1. Assume that the series
∑
ρ

(
Γ((1− ρ)/2)/ζ

′
(ρ)
)
aρ

converges, where ρ runs through the non-trivial zeros of ζ(s) and a denotes a

positive real number, and that the non-trivial zeros of ζ(s) are simple. Then
√
α
∑∞

n=1
(µ(n)/n)e−πα

2/n2

− 1

4
√
π
√
α

∑
ρ

Γ((1− ρ)/2)

ζ ′(ρ)
π
ρ
2αρ

=
√
β
∑∞

n=1
(µ(n)/n)e−πβ

2/n2

− 1

4
√
π
√
β

∑
ρ

Γ((1− ρ)/2)

ζ ′(ρ)
π
ρ
2 βρ.

A generalization of this conjecture was obtained in [9, Theorem 1.6] which led

to a Riesz-type criterion for the Riemann Hypothesis in [16, Theorem 1.1].

Let erf(w) and erfi(w) denote the error function and the complementary error

function respectively. In view of the remark made before the conjecture (4.1), we

do like to point out that there is a modular-type transformation obtained in [17,

Equation (1.18)], namely

√
αe

w2

8

(
erf
(w

2

)
+ 4

∫ 0

−∞

e−πα
2x2

sin(
√
παxw)

e2πx − 1
dx

)

=
√
βe
−w2

8

(
erfi
(w

2

)
+ 4

∫ 0

−∞

e−πβ
2x2

sinh(
√
πβxw)

e2πx − 1
dx

)
, (4.1)

3There is a slight misprint in this asymptotic expansion given in Oloa’s paper. The minus

sign in front of the second expression on the right-hand side there should be a plus. This has

been corrected here.
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whose expressions, we believe, are equal to an integral involving Ξ(t). However,

we are unable to find this integral. If it exists, it would be significant, as it would

enable us to find an integral involving Ξ(t) for the modular-type transformation

corresponding to an integral analogue of the Jacobi theta function. See [17, p. 32]

for a discussion on this topic.

In [17, Section 7], two questions were posed regarding the exact evaluation of∫ ∞
0

xe−πx
2

e2πx − 1
1F1(−2k; 3

2 ; 2πx2) dx

for k ∈ Z+ ∪ {0}, and an exact evaluation of, or at least an approximation to∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

when α 6= π is a positive real number and k ∈ Z+ ∪ {0}. These integrals resulted

from differentiating some modular type transformations of the form F (w,α) =

F (iw, β), αβ = 1, involving the error functions. These questions were recently

solved partially by Paris [25] who obtained approximations of the integrals to

within exponentially small accuracy when k is large and α = O(1).
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Abstract. We illustrate how some basic algebraic properties of certain real

and complex classical matrix groups have a significant say in the analysis of

their topological structures.
1. Introduction

The groups of invertible square matrices over the field R of real numbers or

the field C of complex numbers, also known as the general linear groups, play

an important role in different branches of mathematics like linear algebra, field

theory, Lie groups, differential geometry, representation theory, harmonic analy-

sis, operator algebras and non commutative geometry, to name a few. Various

subgroups of the general linear groups, e.g., the special linear groups, the orthogo-

nal and special orthogonal groups, the unitary and special unitary groups and the

symplectic groups have attracted the attention of some of the best minds in the

world of mathematics for decades, and have also found significance in physics.

These subgroups are usually referred to as the classical linear groups. Operator

algebraists have in fact developed the quantum versions of most of these classical

groups.

Interestingly, apart from their applications to different areas, studying the

topological properties of matrix groups is itself quite significant and occupies

prominent space in mathematics. In this short article, we make an attempt to

show how the linear algebraic results that we learn at undergraduate level turn

out to provide deep implications towards the analysis of the topological structures

of these classical groups.
2. Preliminaries

Throughout this article, K will denote either the field R or the field C with

the usual metric d : K×K→ K given by d(x, y) = |x− y| and Mn(K) will denote

the space of n× n matrices with entries from K.

2.1. Topology on the matrix groups. Recall that there is a natural identifica-

tion between Mn(K) and Kn2

via the canonical map

Mn(K) 3 [aij ] 7→ (a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . ann) ∈ Kn
2

.
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Under this identification, Mn(K) becomes a metric space with the usual metric.

There are some natural continuous maps from and into Mn(K). For instance, if

prs ∈ K[x11, x12, . . . , xmm], 1 ≤ r, s ≤ n, is a collection of n2 polynomials in m2

variables, then the map Mm(K) 3 [aij ] 7→ [prs(a11, a12, . . . , amm)] ∈ Mn(K) is

continuous. And, if X is a metric space and ϕrs : X → K, 1 ≤ r, s ≤ n is a

collection of n2 continuous functions, then the map X 3 x 7→ [ϕrs(x)] ∈Mn(K) is

continuous. In particular the determinant function, being a polynomial function

of the entries of a matrix, is continuous.

We aim to study the compactness and connectedness of the multiplicative

group of invertible square matrices

GL(n,K) := {A ∈Mn(K) : A is invertible} (general linear group),

and its subgroups

SL(n,K) = {A ∈ GL(n,K) : det(A) = 1}, (special linear group)

O(n) = {A ∈ GL(n,R) : AAT = In = ATA}, (orthogonal group)

SO(n) = {A ∈ O(n) : det(A) = 1}, (special orthogonal group)

U(n) = {U ∈ GL(n,C) : UU∗ = In = U∗U}, (unitary group)

SU(n) = {U ∈ U(n) : det(U) = 1}, (special unitary group)

Sp(n,K) = {A ∈ GL(2n,K) : ATJnA = Jn}, (symplectic group),

where AT and U∗ denote the transpose of A and conjugate transpose of U , re-

spectively, and Jn =

(
On In

−In On

)
. It follows from their definitions that O(n) and

U(n) are closed under multiplication as well as inversion; and hence, they form

multiplicative groups. Further, for a matrix A with determinant 1, multiplicativity

of the determinant function yields det(A−1) = 1. In particular, SL(n,K), SO(n)

and SU(n) are all multiplicative groups. That the symplectic matrices form a

multiplicative group will be shown in Section 5.
2.2. Some gems from the world of linear algebra. We now recall some

algebraic properties of the matrix algebra and its subsets (mostly without proof)

which will be used in analyzing the topological structures of multiplicative groups

of invertible matrices.

The Euclidean spaces admit natural inner products given by 〈v, w〉 = wT v

for all v, w ∈ Rn and 〈v, w〉 = w∗v for all v, w ∈ Cn, where we have treated the

vectors v and w as column vectors. We would require the following definition of a

positive semidefinite matrix and the subsequent results, the details of which may

be found in any standard text of linear algebra, see [1, 3] for instance.

Definition 2.1. A square matrix P ∈Mn(K) is said to be positive semidefinite if

〈Px, x〉 ≥ 0 for all x ∈ Kn.

Remark. For any A ∈ Mn(C), A∗A is positive semidefinite and likewise for any

A ∈ Mn(R), ATA is positive semidefinite and it is a fact that these are the only

positive semidefinite matrices possible.
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Proposition 2.2. Let P ∈ Mn(R) be a positive semidefinite matrix. Then P

is symmetric, det(P ) ≥ 0 and there exists a unique postive semidefinite matrix

P 1/2 ∈Mn(R) such that (P 1/2)2 = P and P 1/2 is invertible if and only if P is so.

We now prove the following important result also known as the polar decom-

position of determinant one real matrices.

Theorem 2.3. Let A ∈ SL(n,R). Then there exists a matrix R ∈ SO(n) and a

real, symmetric and positive semidefinite matrix P ∈ SL(n,R) such that A = RP .

Proof. There is an obvious candidate for P , namely P = (ATA)1/2 and this forces

R to be defined as R = AP−1. Clearly, P is real, symmetric and positive semidef-

inite matrix. Further,

RRT = AP−1P−1AT = AP−2AT = A(ATA)−1AT = In

and similarly RTR = In - implying that R is orthogonal. Hence, 1 = det(RTR) =

det(RT ) det(R) = det(R)2 so that det(R) = 1 or −1. Now, 1 = det(A) =

det(R) det(P ) and, by Proposition 2.2 and the fact that P is invertible, we have

det(P ) > 0. Therefore, we must have det(R) = 1, i.e., R ∈ SO(n). �
We now state a result that justifies the name rotation matrices for the elements

of SO(n) - a proof of which can be found in [1, Theorem 6.39].

Proposition 2.4. Any matrix in SO(n) is orthogonally similar to a block diagonal

of the form A1 ⊕A2 ⊕ · · · ⊕Ar, where each Ai is (1) or a 2× 2 rotation matrix of

the type

(
cos θ sin θ

− sin θ cos θ

)
= A(θ) say, for some θ ∈ R.

3. Real Classical groups

In this section, we discuss the topological properties of the real general linear

group GL(n,R) and its subgroups SL(n,R), O(n) and SO(n).

Observe that GL(1,R) ∼= (−∞, 0) ∪ (0,∞) is open, non-compact and discon-

nected. Interestingly, the same properties hold in higher dimensions as well.

Proposition 3.1. (1). GL(n,R) is open and unbounded. (2). GL(n,R) is not

connected.

Proof. (1). The complement of GL(n,R) in Mn(R) is the set {A ∈ Mn(R) :

detA = 0}. Since determinant is a continuous function and {0} is closed in

R, Mn(R) \ GL(n,R) is closed and hence GL(n,R) is open in Mn(R). Also,

kIn ∈ GL(n,R) for all k > 0. Therefore GL(n,R) is unbounded - implying that

GL(n,R) is not compact.

(2). Note that det : GL(n,R)→ R\{0} is a surjective continuous map and R\{0}
is not connected. Since a continuous image of a connected set must be connected,

GL(n,R) cannot be connected. �

We shall, in fact, show thatGL(n,R) has precisely two (path) components, namely,

GL+(n,R) = {A ∈ GL(n,R) : det(A) > 0} and GL−(n,R) = {A ∈ GL(n,R) :

det(A) < 0}. However, in order to achieve this, we will first have to analyze the

topological properties of some of its subgroups.
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Proposition 3.2. The groups O(n) and SO(n) are compact.

Proof. Write any matrix A ∈ O(n) as
(
v1, v2, · · · vn

)T
, where each vi is a row

matrix. Then from the identity AAT = In, we get viv
T
i = 1 for all 1 ≤ i ≤ n.

This implies that A is inside the closed ball of radius
√
n of Rn2

. Therefore O(n)

is a bounded subset of the Euclidean space Rn2

. Let {Ak} be any sequence in

O(n) and suppose Ak → A in Mn(R). Taking limit as k → ∞ in the relation

AkA
T
k = ATkAk = In, by continuity of multiplication, we get AAT = ATA = In

proving that A ∈ O(n). Thus O(n) is closed too. Hence, by the Heine-Borel

theorem, O(n) is compact. If, in addition, each of the matrices Ak above have

determinant 1 then by continuity of the determinant, we also see that detA = 1,

which shows that SO(n) is closed in O(n) and hence compact. �

Theorem 3.3. O(n) is not connected whereas SO(n) is path connected.

Proof. Let M ∈ O(n). Then, as seen in Theorem 2.3, det(M) ∈ {1,−1}. Let

O±(n) := {M ∈ O(n) : det(M) = ±1} = GL±(n,R) ∩O(n).

Then O+(n), which is the same as the subgroup SO(n), and O−(n) are open in

the subspace topology and they form a disconnection of O(n), implying that O(n)

is not connected.

Note that in order to show that SO(n) is path connected, using the reverse

of a path and concatenation of two paths, it is enough to show that any matrix

in SO(n) is joined to In by a path. Since SO(1) = {(1)}, let us assume that

n ≥ 2. Let R ∈ SO(n). Then, by Proposition 2.4, there exists an orthogonal

matrix M ∈ O(n) such that

MRMT = A1 ⊕A2 ⊕ · · · ⊕Ar,
where each Ai is (1) or a 2 × 2 rotation matrix of the type A(θ) for some θ ∈ R.

Without loss of generality, assume that, for some k ≤ r, for 1 ≤ i ≤ k, Ai=A(θi)

for some θi ∈ R, and that Ai = (1) for k < i ≤ r. We can now look for an

appropriate path. For each 1 ≤ i ≤ k, consider the map ϕi : [0, 1]→ SO(2) given

by ϕi(t) = A(tθi). Then each ϕi is a path in SO(2) with end points I2 and A(θi).

Therefore, the map ϕ : [0, 1]→ SO(n) given by

ϕ(t) = MT
(
ϕ1(t)⊕ ϕ2(t)⊕ · · · ⊕ ϕk(t)⊕ In−2k

)
M

is a path in SO(n) with end points ϕ(0) = In and ϕ(1) = R. �

Corollary 3.4. O(n) has precisely two path components, namely, O+(n) and

O−(n).

Proof. By Theorem 3.3, O+(n) = SO(n) is path connected. Now, let A,B ∈
O−(n) and fix a C ∈ O−(n). Then AC,BC ∈ O+(n) and, therefore, there exists a

path ϕ in O+(n) joining AC and BC. Consider the map ϕ̃ : [0, 1]→ O−(n) given

by ϕ̃(t) = ϕ(t)C−1. Then ϕ̃ is a path in O−(n) joining A and B.

Also, we know that O(n) is a disjoint union of O+(n) and O−(n), so these are

the only two path components of O(n). �
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Note that SL(1,R) = {(1)} is clearly path connected and compact. However,

in higher dimensions compactness takes a back seat.

Corollary 3.5. SL(n,R) is closed, path connected and is not compact for n ≥ 2.

Proof. Since det : Mn(R) → R is continuous and SL(n,R) = det−1({1}), it is

closed. It is not bounded as it contains SL(2,R) which contains the matrices(
r 0

0 1
r

)
for all r > 0.

For path connectedness, it is again enough to show that In is connected by a

path to any other matrix in SL(n,R). Let A ∈ SL(n,R). Then, by Theorem 2.3,

there exists an R ∈ SO(n) and a real, symmetric and positive semidefinite matrix

P ∈ SL(n,R) such that A = RP . By Theorem 3.3, SO(n) is path connected, so

there exists a path ϕ : [0, 1]→ SO(n) ⊂ SL(n,R) with end points ϕ(0) = In and

ϕ(1) = R. Then the map ϕ̃ : [0, 1]→ SL(n,R) given by ϕ̃(t) = ϕ(t)P is a path in

SL(n,R) with end points ϕ̃(0) = P and ϕ̃(1) = RP = A.

It now suffices to show that there exists a path in SL(n,R) with end points

In and P for then a path from In to A would be obtained by concatenating the

paths from In to P and from P to A.

Since P is a symmetric matrix, there exists an orthogonal matrix Q such that

QPQ−1 equals the diagonal matrix D := diag(r1, r2, . . . , rn), where r1, r2, . . . , rn

are the eigenvalues of P . Since P is positive semidefinite and invertible, ri > 0,

so that 1 + t(ri − 1) > 0, for all 1 ≤ i ≤ n and 0 ≤ t ≤ 1. The map ψ : [0, 1] →
GL+(n,R) given by

ψ(t) = diag
(

1 + t(r1 − 1), 1 + t(r2 − 1), . . . , 1 + t(rn − 1)
)

is a path with end points ψ(0) = In and ψ(1) = D. Then,

(1/ n
√

det(ψ(t)) )Qψ(t)Q−1 ∈ SL(n,R) for all 0 ≤ t ≤ 1, so that the map

[0, 1] 3 t 7→ (1/ n
√

det(ψ(t)) )Qψ(t)Q−1 ∈ SL(n,R)

is a path in SL(n,R) joining In and P . �

We now have the required tools to show that GL(n,R) has precisely two

components, namely, GL+(n,R) and GL−(n,R).

Corollary 3.6. GL+(n,R) and GL−(n,R) are path connected and these are the

only two path components of GL(n,R).

Proof. Let A ∈ GL+(n,R). Then Ã = ( 1/ n
√

det(A) )A ∈ SL(n,R). So, by path

connectedness of SL(n,R), there exists a path ϕ in SL(n,R) ⊂ GL+(n,R) with

end points In and Ã. Also, there is an obvious path in GL+(n,R) with end points

Ã and A, namely, [0, 1] 3 t →
(

(1− t)/ n
√

det(A) + t
)
A ∈ GL+(n,R). Therefore,

GL+(n,R) is path connected.

The fact that GL−(n,R) is also path connected follows on the lines of the

proof of path connectedness of O−(n) as in Corollary 3.4.
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Also, we know that GL(n,R) is a disjoint union of GL+(n,R) and GL−(n,R)

so these are the only two path components of GL(n,R). �
4. Complex Classical groups

In this section, we take up the complex general linear group GL(n,C) and its

subgroups SL(n,C), U(n) and SU(n). The elements of U(n) are called unitary

matrices and satisfy the equivalent angle preserving property:

〈Uv,Uw〉 = (Uw)∗(Uv) = w∗U∗Uv = w∗v = 〈v, w〉, for all v, w ∈ Cn

Proposition 4.1. (1) GL(n,C) is open and unbounded. (2) GL(n,C) is path

connected.

Proof. (1) Since det : Mn(C) → C is continuous and A ∈ GL(n,C) if and only if

det(A) 6= 0, we see that GL(n,C) = det−1(C \ {0}) is open. Since GL(n,R) ⊂
GL(n,C), GL(n,C) is unbounded.

(2) Let A ∈ GL(n,C) with distinct (non-zero) eigenvalues λ1, λ2, . . . , λr and

multiplicites m1,m2, . . . ,mr, respectively. Then, m1 +m2 + · · ·+mr = n. Since

C is alebraically closed, A possesses a Jordan canonical form ([1, Corollary 2, p.

291]), that is, there exists a P ∈ GL(n,C) such that PAP−1 = A1 ⊕A2 ⊕ · · ·Ar,
where each Ai is a block diagonal matrix of the form

Ai = Jm1,i
(λi)⊕ Jm2,i

(λi)⊕ · · · ⊕ Jmki,i
(λi),

with m1,i + m2,i + · · · + mki,i = mi, where for each j, Jmj,i
(λi) is the mj ×mj

Jordan block

Jmj,i(λi) =



λi 1

λi 1
. . .

. . .

λi 1

λi

 .

Note that for each 0 6= λ ∈ C, we can easily find a path ψλ : [0, 1] → C with

end points ψλ(0) = 1 and ψ(1) = λ such that ψλ does not pass through the

origin of C. As a consequence, for each Jordan block Jm(λ) with λ 6= 0, the map

ϕ:[0, 1]→Mm(C) given by

ϕm,λ(t) =



ψλ(t) t

ψλ(t) t
. . .

. . .

ψλ(t) t

ψλ(t)


is a path because each component of ϕm,λ is continuous, and has end points

ϕm,λ(0) = Im and ϕm,λ(1) = Jm(λ). Also, since 0 does not lie in the range

of ψλ, we see that ϕm,λ(t) ∈ GL(m,C) for all t ∈ [0, 1]. Therefore, the map

ϕ : [0, 1]→ GL(n,C) given by

ϕ(t) =
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P−1
(
ϕm1,1,λ1

(t)⊕ ϕm2,1,λ1
(t)⊕ · · · ⊕ ϕmk1,1,λ1

(t)⊕ ϕm1,2,λ2
(t)⊕ ϕm2,2,λ2

(t)⊕

· · · ⊕ ϕmk2,2,λ2
(t)⊕ · · ·ϕm1,r,λr

(t)⊕ ϕm2,r,λr
(t)⊕ · · · ⊕ ϕmkr,r,λr

(t)
)
P

is a path in GL(n,C) with end points ϕ(0) = In and ϕ(1) = A and we are done. �

Note that SL(1,C) = {(1)} is compact and path connected. However, there

is slight difference in compactness property in higher dimensions.

Corollary 4.2. SL(n,C) is closed, path connected and is not compact for n ≥ 2.

Proof. Let A ∈ SL(n,C). Then, by path connectedness of GL(n,C), there exists

a path ϕ : [0, 1] → GL(n,C) such that ϕ(0) = In and ϕ(1) = A. Note that

components of the path ϕ are all paths in C and suppose they are given by ϕ(t) =

[ϕij(t)]. Then, if θ : [0, 1]→ C\{0} is given by θ(t) = det(ϕ(t))−1, by n-linearity of

the determinant function, we see that the matrix


θ(t)ϕ11(t) . . . θ(t)ϕ1n(t)

ϕ21(t) . . . ϕ2n(t)
...

. . .
...

ϕn1(t) . . . ϕnn(t)


has determinant 1 for all 0 ≤ t ≤ 1. This suggests us to consider the map

ϕ̃ : [0, 1] → SL(n,C) given by ϕ̃(t) =


θ(t)ϕ11(t) . . . θ(t)ϕ1n(t)

ϕ21(t) . . . ϕ2n(t)
...

. . .
...

ϕn1(t) . . . ϕnn(t)

. Since θ is

continuous, it is easily seen that ϕ̃ is a path in SL(n,C) with end points ϕ̃(0) = In

and ϕ̃(1) = A. Hence SL(n,C) is path connected.

Since SL(n,C) = det−1({1}) and det is continuous, SL(n,C) is a closed subset

of Mn(C). However, SL(n,C) is not bounded as it contains SL(n,R) which is

unbounded, as seen in Corollary 3.5. �

Theorem 4.3. U(n) is compact and path connected.

Proof. Since the map Mn(C) 3 A 7→ A∗A ∈Mn(C) is continuous and U(n) is the

inverse image of the singleton closed set {In} under this map, we see that U(n) is

a closed subset of Mn(C). Also, it is easily seen that U(n) lies in the closed ball

of radius
√
n of Cn2

under its usual metric. Hence, by the Heine-Borel theorem,

U(n) is compact.

Again, it is enough to show that any unitary matrix is connected to In by a

path in U(n). If A ∈ U(n), then A is normal and therefore unitarily diagonalizable

([3, Corollary to Theorem 21, Chapter 8]), i.e., there exists a U ∈ U(n) such that

U∗AU is diagonal. Note that, for each U ∈ U(n), the operation Ad(U) : Mn(C)→
Mn(C) given by Ad(U)(X) = U∗XU is a homeomorphism; so, it is enough to prove

that every diagonal unitary matrix is connected to In by a path in U(n). Indeed,

if D = U∗AU is a diagonal unitary matrix, and ϕ is a path in U(n) connecting
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In to D, then the map Φ : [0, 1]→ U(n) given by Φ(t) = Uϕ(t)U∗ is a path with

Φ(0) = In and Φ(1) = Uϕ(1)U∗ = A.

Let D = diag(eiθ1 , eiθ2 , . . . , eiθn) be a diagonal unitary matrix, where θi ∈
R for all 1 ≤ i ≤ n. Consider the path ϕ : [0, 1] → U(n) given by ϕ(t) =

diag(eitθ1 , eitθ2 , . . . , eitθn). Clearly, ϕ is a path in U(n) with ϕ(0) = In and ϕ(1) =

D. This proves our assertion. �

Note that U(1) has the obvious metric space structure, namely, it equals the

unit circle T = {z ∈ C : |z| = 1}. Also, GL(1,C) is just the punctured complex

plane at the origin. It is usually not possible to visualize the metric space structure

of higher matrix group, except for the following beautiful metric space realization

of SU(2).

Proposition 4.4. The group SU(2) is homeomorphic to the real Euclidean sphere

S3 := {(x, y, w, z) ∈ R4 : x2 + y2 + w2 + z2 = 1}.
Proof. Note that for A = (aij) ∈ SU(2), its inverse is given by A−1 = A∗. Since

A−1 =

(
a22 −a12
−a21 a11

)
by direct computation and A∗ =

(
a11 a21

a12 a22

)
by defi-

nition, comparing entries, we obtain A =

(
a11 a12

−a12 a11

)
. If ars = xrs + ιyrs,

xrs, yrs ∈ R for r, s = 1, 2, we obtain 1 = det(A) = |a11|2 + |a12|2 = x211 + y211 +

x212 + y212. This induces the map

SU(2) 3

(
a11 a12

−a12 a11

)
7→ (x11, y11, x12, y12) ∈ S3.

Since SU(2) is compact, being a closed subset of U(2), this map is a continuous

bijection from the compact space SU(2) to the Haudorff space S3. Hence, it is a

homeomorphism ([5, Theorem 26.6]). �

This obviously tells us that SU(2) is path connected. We now show that the

same holds in higher dimensions as well.

Theorem 4.5. SU(n) is compact and path connected.

Proof. By definition, SU(n) is a closed subset of the compact space U(n) and

hence is compact.

One is tempted to think that connectedness of SU(n) can be deduced from

that of U(n) on the lines of Corollary 4.2. However, that trick does not provide us

with a path in SU(n). We actually try to imitate the proof of Theorem 4.3. Indeed,

if A ∈ SU(n), then, there exists a U ∈ U(n) such that U∗AU = D is diagonal.

If D = diag(eiθ1 , eiθ2 , . . . , eiθn) for some θi ∈ R, we get 1 = det(A) = det(D) =

ei
∑n

i=1 θi , so that e−i
∑n−1

i=1 θi = eiθn . Consider the map ϕ : [0, 1] → SU(n) given

by
ϕ(t) = U diag(eitθ1 , eitθ2 , . . . , eitθn−1 , e−it

∑n−1
i=1 θi)U∗.
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Clearly, ϕ is a path in SU(n) with end points ϕ(0) = In and ϕ(1) = UDU∗ =

A because e−i
∑n−1

i=1 θi = eiθn . The above trick was motivated by the proof of

[2, Proposition 1.10]. �
5. Symplectic groups

Before discussing the topological properties of symplectic groups, let us quickly

get a short overview of some of their algebraic properties.

The matrix Jn (see page-2) belongs to Sp(n,K), it satisfies the equalities

JTn = −Jn = J−1n and has determinant 1. Also, for any A ∈ Sp(n,K), the defining

equation ATJnA = Jn yields det(A)2 = 1 so that det(A) = ±1. We show in

the following that Sp(n,K) ⊆ SL(2n,K). Notice that Jn induces a bilinear form

B : K2n ×K2n → K given by

B(x, y) = xTJny =
∑k

i=1
(xiyn+i − xn+iyi) (5.1)

which is easily seen to be non-degenerate (i.e., B(x, y) = 0 for all y ∈ K2n implies

x = 0) and skew-symmetric (i.e., B(x, y) = −B(y, x)). We observe that

Sp(n,K) = {A ∈M2n(K) : B(Ax,Ay) = B(x, y) for all x, y ∈ K2n}. (5.2)

Lemma 5.1. Sp(n,K) is a group that is closed under transposition. Also, for

A ∈ Sp(n,K), we have AT = −JnA−1Jn and A−1 = −JnATJn.

Proof. From (5.2), we see that Sp(n,K) is multiplicatively closed, i.e., AB ∈
Sp(n,K) for allA,B ∈ Sp(n,K). Also, forA ∈ Sp(n,K), we have B(A−1x,A−1y) =

B(AA−1x,AA−1y) = B(x, y) for all x, y ∈ K2n. Thus, Sp(n,K) is a subgroup of

GL(2n,K). Then, for A ∈ Sp(n,K), its defining condition yields AT = JnA
−1J−1n

which implies that Sp(n,K) is closed under transposition and it also provides the

desired expressions for AT and A−1. �

Lemma 5.2. Let A ∈ Sp(n,K) and p(λ) be its characteristic polynomial. Then,

the following hold:

(1). p(λ) = ±λ2np(1/λ). (2). If λ is an eigenvalue of A, then so is 1/λ.

(3). A and A−1 have same eigenvalues.

Moreover, if K = C and λ is an eigenvalue of A, then so are λ̄ and
(
λ̄
)−1

.

In particular, Sp(n,K) ⊆ SL(2n,K).

Proof. (2) and (3) follow from (1); and (1) follows from the following:

p(λ)=det
(
A− λI2n

)
=det

(
AT − λI2n

)
= det

(
− JnA−1Jn − λI2n

)
= det

(
− JnA−1Jn + λJnJn

)
= det

(
−A−1 + λI2n

)
= det(A−1) det

(
− I2n + λA

)
= det(A−1)λ2n det

(
− λ−1I2n +A

)
= ±λ2np(1/λ).

Since complex roots of a real polynomial always occur in conjugate pairs we are

done. �
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Lemma 5.3. Sp(1,K) = SL(2,K).

Proof. Let A =

(
a b

c d

)
∈ GL(2,K). Then A ∈ Sp(1,K)⇐⇒ATJ1A = J1. Since

ATJ1A=

(
0 −bc+ ad

−ad+ bc 0

)
, we have A ∈ Sp(1,K)⇐⇒ det(A)=1. �

However, for n ≥ 2, it easily seen that Sp(n,K) ( SL(2n,K). For instance,

Dr = diag
(
r, r, ..., r, 1/r2n−1

)
∈ SL(2n,K) \ Sp(n,K)

for every r > 1 because, unlike r, 1/r is not an eigenvalue of Dr.

We now analyse the topological properties of symplectic groups with the help

of linear algebra. For that, we recall an important class of symplectic matrices

called symplectic transvections. For each nonzero u ∈ K2n and λ ∈ K, consider

the linear map τ = τu,λ : K2n → K2n given by τu,λ(v) = v + λB(v, u)u, v ∈ K2n.

Let W = {v ∈ K2n : B(u, v) = 0}. Then, it is easily seen that W is a hyperplane,

i.e., dim
(
K2n/W

)
= 1, τ|W = IdW and τ(v)− v ∈W for all v ∈ V . A linear map

of the form τu,λ is called a symplectic transvection.

Note that B(τu,λ(x), τu,λ(y)) = B(x, y) for all x, y ∈ K2n; so that τu,λ ∈
Sp(n,K) for all u ∈ K2n and λ ∈ K. Also, τu,0 = I2n for all u ∈ K2n. Interestingly,

the symplectic transvections generate the symplectic groups - a proof of which can

be found, for instance, in [4, § 6.9].

Theorem 5.4. Sp(n,K) is generated by the symplectic transvections.

The symplectic groups share some topological properties with the special linear

groups.

Proposition 5.5. Sp(n,K) is closed and is not compact for all n ∈ N.

Proof. If {Xm} is a sequence in Sp(n,K) converging to some X in M2n(K), then

Jn = (Xm)TJnXm → XTJnX as m→∞, and hence XTJnX = Jn implying that

X ∈ Sp(n,K). So, Sp(n,K) is closed in M2n(K).

For each r > 0, consider the block diagonal matrix Ar = Br ⊕ B 1
r
, where

Br = diag(r, 1r , 1, 1, . . . , 1) ∈ SL(n,K). It is easily seen that (Ar)
TJnAr = Jn, i.e.,

Ar ∈ Sp(n,K) for all r > 0 and {Ar : r > 0} is not bounded in M2n(K). Hence,

Sp(n,K) is not compact. �

Exercise. Let G be a subgroup of GL(n,K) generated by a set S. If each element

of S can be joined by a path in G to the identity matrix In, then show that G is

path connected.

Proposition 5.6. Sp(n,K) is path connected for all n ∈ N.

Proof. By Theorem 5.4, every symplectic matrix is a (finite) product of symplectic

transvections. So, it is enough to show that every symplectic transvection can be

connected to the identity matrix by a path in Sp(n,K). Consider a symplectic

transvection τu,λ and define γ : [0, 1]→ Sp(n,K) by

γ(t) = τu,(1−t)λ, t ∈ [0, 1].
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It is an easy exercise to show that γ is a path in Sp(n,K) with end points γ(0) =

τu,λ and γ(1) = τu,0 = I2n. �

Although both real and complex symplectic groups have similar basic topolog-

ical properties, they are topologically different as they are known to have different

“fundamental groups”, a notion studied in “algebraic topology”.

There is also a compact version of (complex) symplectic groups given by

Sp(n) = Sp(n,C) ∩ U(2n).

It is clearly compact and is known to be path-connected. However, a proof of

it requires some advanced mathematics (“Lie group theory”) which is out of the

reach of this discussion.
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Abstract. Determining the Galois group of a polynomial is one of the major

problems of Algebra. In general, it is a difficult problem but for a polynomial

of degree less than or equal to 4, it is completely determined. Almost all

standard textbooks of Algebra, such as [1], [2], [3], give methods to deal with

it. But these methods are tedious with hands-on computation. This article

is an attempt to combine the methods given in these books with the method

developed in [7] and [6], to simplify the computation of the Galois group of

polynomials up to degree four.

1. Introduction and preliminaries

The main aim of this article is to give a method for computing the Galois group

of an irreducible, separable quartic polynomial over a field K of characteristic not

equal to 2. In the first section, we recall the general theory needed for finding

the Galois group of polynomials of any degree. In order to keep the article self-

contained we will define all the terms required here. For the sake of completeness,

in the second section we will compute the Galois group of quadratic and cubic

polynomials even though it is easy to determine. The third section is the main

part of the article where we determine the Galois group of an irreducible separable

quartic polynomials. In the last section, we will see an application to determine

the Galois group of a quartic polynomial which is the minimal polynomial of

elements of the form
√
a+ b

√
d. We also compute the splitting fields of irreducible

polynomials whenever feasible.

Let L|K be a field extension. We know that the set of all automorphisms of L

fixing K forms a group. When order of this group is same as the degree [L : K] of

the extension L|K then the extension is called the Galois extension and the group

is called the Galois group of L over K denoted by Gal(L|K). If f(x) is a separable

polynomial of degree n ≥ 1 over K and L|K is the splitting field of f(x), then

L|K is a Galois extension and then the Galois group Gal(L|K) is referred to as the

Galois group of f(x), and we denote it by Gf . Our aim is to determine Gf , when

2010 Mathematics Subject Classification: 1201, 12F10

Key words and phrases: Polynomials, transitive subgroup, discriminants, resolvent cubic,

Galois group.

c© Indian Mathematical Society, 2018 .
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f(x) is an irreducible polynomial. In order to study the Galois group of f(x) it is

enough to consider f(x) to be monic. Henceforth we assume f(x) to be a monic

polynomial.

Let α be any root of f(x). We know that for any σ ∈ Gf , σ(α) is also a root of

f(x). Hence, if r1, r2, · · · , rn are the roots of f(x) then for any σ ∈ Gf , σ(ri) = rj

for some j = 1, 2, · · ·n. Thus, Gf acts on the set {r1, r2, · · · , rn} and any K-

automorphism σ of L induces a permutation of r1, r2, · · · , rn. As r1, r2, · · · , rn
generate L over K, these K-automorphisms can be uniquely determined by the

permutations which they induce. Hence, we can view Gf as a subgroup of Sn, the

symmetric group on n symbols.

The following theorem gives a necessary and sufficient condition for the above

action to be transitive (i.e., for any two roots ri, rj of f(x), there exists σ ∈ Gf
such that σ(ri) = rj).

Theorem 1.1. Let f(x) be a separable polynomial of degree n over a field K.

Then its Galois group Gf acts transitively on the set of all roots of f(x) if and

only if f(x) is irreducible over K.

Proof. Suppose f(x) is irreducible polynomial over K. Since f(x) is separable over

K of degree n, the set of all roots of f(x) may be assumed to be {r1, r2, · · · , rn}.
Let L|K be the splitting field of f(x). Since any ri, rj (1 ≤ i, j ≤ n) are roots of the

same irreducible polynomial f(x), there exists an isomorphism σ : K(ri)→ K(rj)

such that σ(ri) = rj . This isomorphism can be extended to a K-automorphism of

L (refer to Theorem 13.27 in [4]). This proves that Gf acts transitively on the set

of all roots of f(x).

To prove the converse, suppose f(x) is not irreducible. Assume that g(x) and

h(x) are any two distinct irreducible factors of f(x) and rg, rh are the roots of g(x)

and h(x) respectively. Since Gf acts transitively on the roots of f(x), there exists

σ ∈ Gf , such that σ(rg) = rh. But this is not possible as any K- automorphism

of L maps rg to a root of g(x). �

Note that if α is any root of an irreducible separable polynomial f(x) of degree

n over a field K, then K(α) is a subfield of L such that [K(α) : K] = n. Hence,

by the fundamental theorem of Galois theory, Gf has a subgroup of index n -

implying that the order of Gf is divisible by n. Since we have seen that Gf can be

viewed as a subgroup of Sn, we have the following theorem in view of the above

theorem.

Theorem 1.2. Let K be a field and f(x) be an irreducible separable polynomial

of degree n over K. Then the Galois group Gf of f(x) is a transitive subgroup of

Sn whose order is divisible by n.

From the above theorems, in order to determine Gf one needs to look at only

the transitive subgroups of Sn of order divisible by n. Since for a large n the
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number of such subgroups of Sn is large, there are many possibilities for Gf . Let

us give one more criterion which enables us to determine Gf . For this, we require

the notion of the discriminant of a polynomial.

Definition 1.1. Let f(x) be any polynomial of degree n ≥ 1 over a field K. Let

r1, r2, · · · , rn be the roots of f(x). Then the discriminant 4 of f(x) is defined as

4 =
∏

1≤i<j≤n

(ri − rj)2

Theorem 1.3. Let f(x) be an irreducible separable polynomial of degree n over

a field K, r1, r2, · · · , rn be the roots of f(x) and 4 be the discriminant of f(x).

Then 4 ∈ K. Further, if characteristic of K 6= 2, then
√
4 ∈ K if and only if

Gf ⊆ An, where An denotes the alternating group on n symbols.

Proof. To prove 4 ∈ K it is enough to prove σ(4) = 4 for every σ ∈ Gf . Since

every permutation is a product of transpositions and every transposition fixes 4,

4 is fixed by every element of Gf . Therefore 4 ∈ K.

Consider
√
4 =

∏
1≤i<j≤n

(ri − rj). If τ = (ri, rj) is any transposition then τ

changes the sign of the factor ri − rj and leaves other factors unchanged. Thus,

for any σ ∈ Gf

σ(
√
4) =


√
4, if σ ∈ An;

−
√
4, otherwise.

But
√
4 6= −

√
4 as characteristic of K 6= 2. This proves that σ(

√
4) =

√
4 for

all σ ∈ Gf if and only if Gf ⊆ An. �

We will prove another lemma which will be used later.

Lemma 1.1. Let f(x) be an irreducible separable polynomial of degree n over a

field K of characteristic 6= 2 and L be the splitting field of f(x) over K. Suppose

Gf = Sn. Then K(
√
4) is the unique quadratic extension of K contained in L.

Proof. Since Gf = Sn, the discriminant 4 of f(x) is not a square in K. Therefore

K(
√
4) is a quadratic extension of K contained in L. The alternating group An

is the unique subgroup of Sn, of index 2. Hence by the fundamental theorem of

Galois theory L has a unique subfield of degree 2, which has to be K(
√
4). �

2. Galois group of Quadratic and Cubic Polynomials

Determining the Galois groups of quadratic and cubic polynomials is easy. It

depends totally on the discriminant of the polynomial. So let us start by looking

at the discriminant of a quadratic polynomial. If f(x) = x2 + bx+ c is a quadratic

polynomial with roots r1, r2 over a field K then its discriminant 4 = (r1− r2)2 =

(r1 + r2)2−4r1r2 = b2−4c. Clearly, if f(x) is an irreducible polynomial then 4 is

not a square in K and hence K(
√
4) is a quadratic extension of K. If characteristic

of K 6= 2, we may find the discriminant by substituting x = y − b/2. This gives

the polynomial g(y) = y2 − b2/4 + c = y2 − 4/4. Clearly the discriminant of
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g(y) = 4, the discriminant of f(x). The roots of g(y) are simply ±
√
4/2. Since

the roots of f(x) and g(y) differ by the constant b/2, both have the same splitting

field. But the splitting field of g(y) is K(
√
4), hence the splitting field of f(x) is

also K(
√
4). Therefore, if f(x) is irreducible then Gf = S2.

Next, consider the cubic polynomial f(x) = x3 + ax2 + bx + c. Substituting

x = y − a/3, f(x) reduces to g(y) = y3 + py + q, where p = b − a2/3 and q =

(1/27)
(
2a3 − 9ab+ 27c

)
(this substitution is valid only when the characteristic of

field K 6= 3).1 Note that the roots of f(x) and g(y) differ by the constant a/3; and

hence, both polynomials have the same splitting field and the same discriminant.

If we assume y1, y2, y3 are the roots of g(y), then g(y) = (y − y1)(y − y2)(y − y3)

and its derivative g′(y) = (y − y2)(y − y3) + (y − y1)(y − y3) + (y − y1)(y − y2).

Hence we get
g′(y1)g′(y2)g′(y3) = −4. (2.1)

Since g′(y) = 3y2 + p, from (2.1) we get

4 = −4p3 − 27q2. (2.2)

Substituting back the values of p and q in terms of a, b, c we get

4 = a2b2 − 4b3 − 4a3c− 27c2 + 18abc (2.3)

For detailed computation, one can refer to [4]. Once we have the discriminant, the

following theorem determines the Galois group of f(x).

Theorem 2.1. Let f(x) be an irreducible separable polynomial of degree 3 over

K (characteristic K 6= 2). Then the Galois group Gf of f(x) will be A3 or S3

depending, respectively, on whether the discriminant 4 of f(x) is a square in K

or not.

Proof. By theorem (1.2), Gf is a transitive subgroup of S3 of order divisible by 3.

Hence the only possibilities for Gf are A3 or S3. By Theorem 1.3, Gf = A3 if and

only if
√
4 ∈ K, otherwise Gf = S3. �

Remark 2.1. Let L be the splitting field of f(x) over K. If
√
4 ∈ K, then

[L : K] = |Gf | = 3. Hence L = K(r1), where r1 is any root of f(x). If
√
4 /∈ K

then L = K(r1,
√
4).

3. The Galois group of Quartic Polynomials

We continue to assume characteristic of K 6= 2. Let f(x) = x4+ax3+bx2+cx+

d be an irreducible separable polynomial over K, r1, r2, r3, r4 be its roots and 4
be its discriminant. As in the case of cubic polynomials, substituting x = y− a/4,

we get a polynomial g(y) = y4 + b1y
2 + c1y+ d1. Both f(x) and g(y) have a same

splitting field and the same discriminant as their roots differ by the constant a/4.

By a procedure similar to the cubic polynomials we can find the discriminant 4
of f(x) as

1Discriminant can be found for any polynomial over any field. This method for finding

discriminant requires the characteristic of K 6= 3.
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4 = a2b2c2 − 4a2b3d− 6a2c2d− 128b2d2 − 4a3c3 + 16b4d− 4b3c2

−27c4 − 27a4d2 + 18abc3 + 144a2bd2 − 192acd2 + 144bc2d+ 256d3

−80ab2cd+ 18a3bcd. (3.1)

A detailed computation is given in [4].

Let L|K be the splitting field of f(x) and Gf be its Galois group. By Theorem

1.2, Gf is a transitive subgroup of S4 of order divisible by 4. The transitive

subgroups of S4 of order divisible by 4 are: S4, A4, three conjugate subgroups

of order 8 isomorphic to the dihedral group (we denote it by D4), three cyclic

subgroups of order 4 (we denote it by C4) and one subgroup isomorphic to the

Klein-4 group which we denote by V4 (we take V4 = {1, (12)(34), (13)(24), (14)(23)}
because out of total 3 subgroups of order 4 isomorphic to the Klein-4 group only

V4 is transitive). Therefore we get

Gf = S4, A4, D4, C4 or V4. (3.2)

Note that V4 is the unique normal subgroup of S4 of order 4. Therefore Gf ∩ V4
is a normal subgroup of Gf . If F is the fixed field of Gf ∩ V4, then by the

fundamental theorem of Galois theory, F |K is a Galois extension with Galois

group Gf/(Gf ∩ V4). As Gf is a subgroup of S4, this means that Gf/(Gf ∩ V4) is

a subgroup of S4/V4 which is isomorphic to S3. Thus F |K is a Galois extension

whose Galois group is isomorphic to a subgroup of S3. In the following subsection,

we will show that F is the splitting field of a cubic polynomial over K.

3.1. Resolvent Cubic. Consider the following partially symmetric functions.

α = r1r2 + r3r4, β = r1r3 + r2r4, and γ = r1r4 + r2r3. (3.3)

Observe that α, β, γ are invariant under V4. We prove the following theorem.

Theorem 3.1. Let α, β, γ be as in (3.3) and F be the fixed field of Gf ∩V4. Then

F = K(α, β, γ).

Proof. Being invariant under V4, α, β, γ are fixed byGf∩V4 and henceK(α, β, γ) ⊆
F . To prove F ⊆ K(α, β, γ) we proceed as follows. Denote the three transitive

subgroup of S4 of order 8, isomorphic to the dihedral group, by D
(1)
4 , D

(2)
4 , D

(3)
4 .

Assume D
(1)
4 is generated by σ = (1324) and τ = (12). Then σ(α) = α and

τ(α) = α, and hence α is fixed by generators of D
(1)
4 . In fact, D

(1)
4 is the stabilizer

of α in S4. Similarly, the other two conjugates D
(2)
4 and D

(3)
4 are the stabilizers of

β and γ respectively.

One can easily check that D
(1)
4 ∩D(2)

4 ∩D(3)
4 = V4. Therefore, D

(1)
4 ∩D(2)

4 ∩
D

(3)
4 ∩Gf = Gf ∩V4. Hence the subgroup of Gf which stabilizes α, β, γ is Gf ∩V4,

and hence Gal(L|K(α, β, γ)) = Gf ∩ V4. Thus F, the fixed field of Gf ∩ V4, is

contained in K(α, β, γ). �
The polynomial c(x) having roots α, β and γ is called the resolvent cubic of f(x).

Using the relations between roots and coefficients of a polynomial one can verify

that
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c(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd). (3.4)

As we will soon see, the resolvent cubic plays an important role in determining

the Galois group of the quartic polynomial.

Let us now consider the discriminants of f(x) and c(x). Let L be the split-

ting field of f(x) over K and assume that Gal(L|K)= S4. Then, by Theorem

3.1, K(α, β, γ)|K is the Galois extension with the Galois group S4/V4 which is

isomorphic to S3. We denote K(α, β, γ) by M for convenience. By Lemma 1.1, L

contains a unique quadratic subfield K(
√
4), where 4 is the discriminant of the

quartic polynomial f(x). By the same lemma, if D is the discriminant of c(x) then

K(
√
D) is the unique quadratic subfield of M( of L also). Then by uniqueness,

these subfields must be same. This means that the discriminant of f(x) and c(x)

differ by a multiple of a square in K. By direct computation, one can verify that

these discriminants are same even if Gal(L|K) 6= S4.

One can also consider the partially symmetric functions α′ = (r1 + r2)(r3 +

r4), β′ = (r1 + r3)(r2 + r4) and γ′ = (r1 + r4)(r2 + r3). We will see that the cubic

polynomial having roots α′, β′ and γ′ occurs naturally when one tries to solve the

quartic using geometric ideas. Let us discuss it in the following subsection.

3.2. A geometric approach to the resolvent cubic. As mentioned in the

beginning of section 3, it is enough to consider the polynomial f(x) = x4 + bx2 +

cx+ d. By putting y = x2, the polynomial reduces to y2 + by + cx+ d. Hence in

order to find the roots of f(x), one needs to solve the equations f1 : x2 − y = 0

and f2 : y2 + by + cx + d = 0 simultaneously. For this it is enough to find λ, so

that f2 + λf1 is a product of a pair of lines y −m1x+ c1, y −m2x+ c2. Suppose

r1, r2, r3, r4 are the roots of f(x). Then the four points (x, y2) of intersection of

f1 and f2 are given by

(r1, r
2
1), (r2, r

2
2), (r3, r

2
3), (r4, r

2
4). (3.5)

One can join these four points in pairs to get six lines and the equations of

these lines can be suitably multiplied in pairs to get λ. For example, consider

m1 = (r21 − r22)/(r1 − r2) = r1 + r2, m2 = (r23 − r24)/(r3 − r4) = r3 + r4; then

f2 + λf1 = (y −m1x+ c2)(y −m2x+ c2) and by comparing the coefficient of x2,

we get λ = (r1 + r2)(r3 + r4). By considering different pairs of points from (3.5),

we get two more values of λ. The list of these three values is, say,

α′ = (r1 + r2)(r3 + r4), β′ = (r1 + r3)(r2 + r4), γ′ = (r1 + r4)(r2 + r3). (3.6)

Now, by plane geometry, f2 + λf1 = y2 + by+ cx+ d+ λ(x2− y) represents a pair

of straight lines if the determinant∣∣∣∣∣∣∣
λ 0 c

2

0 1 b−λ
2

c
2

b−λ
2 d

∣∣∣∣∣∣∣ = 0

Simplifying this, we get the following cubic equation in λ :

c′(λ) = λ3 − 2bλ2 + (b2 − 4d)λ+ c2 = 0. (3.7)
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Since r1, r2, r3, r4 are the roots of f(x) = x4 + bx2 + cx+ d, we have

r1 + r2 + r3 + r4 = 0, b = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

c = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4, d = r1r2r3r4.

Using these relations one can easily verify that α′, β′, γ′ are the roots of the cu-

bic polynomial c′(x). Hence while finding roots of f(x), one naturally gets the

polynomial c′(x) as in (3.7) having roots as in (3.6). This polynomial c′(x) is also

called the resolvent cubic of f(x). We refer to [9] for more precise statements and

detailed account in this regard.

Let L be the splitting field of f(x). By the arguments similar to Theorem

3.1, we can see that K(α′, β′, γ′) is fixed field of Gf ∩ V4. Hence both the fields

K(α, β, γ) and K(α′, β′, γ′) are fixed fields of the same subgroup of Gf . Therefore

both polynomials c(x) and c′(x) give rise to the same splitting field. Also note

that α+β = γ′, α+ γ = β′ and β+ γ = α′. Hence, now onwards we will take c(x)

as the resolvent cubic.

3.3. Determination of the Galois Group. Let f(x) = x4 + ax3 + bx2 + cx+ d

be an irreducible separable polynomial over a field K of characteristic 6= 2. As

pointed out earlier the resolvent cubic plays an important role in the determination

of Gf . In fact, consider the resolvent cubic c(x) and its roots α, β, γ as defined

in (3.4) and (3.3) respectively. By Theorem 3.1, the splitting field K(α, β, γ) of

the resolvent cubic is a Galois extension of K with Galois group Gf/(Gf ∩ V4).

Therefore, if one can determine the Galois group of the resolvent cubic, then it

becomes easy to determine Gf .

Theorem 3.2. Let f(x) be an irreducible separable polynomial of degree 4 over a

field K of characteristic 6= 2. If 4, c(x), α, β and γ are as defined above, then the

Galois group Gf of f(x) is either A4 or S4 if and only if c(x) is irreducible over

K. Further, the Galois group of f(x) is A4 if 4 is a square in K and is S4 if 4
is not a square in K

Proof. Let us assume c(x) is irreducible over K. As disussed in the para after

(3.4), the discriminant of c(x)= the discriminant of f(x)=4, and the splitting

field of c(x) over K is K(α, β, γ). By theorem 3.1, K(α, β, γ) is the fixed field of

Gf ∩V4 - a normal subgroup of Gf . So, by Galois theory, the Galois group of c(x)

is Gf/(Gf ∩ V4). Now, by Theorem 2.1, the Galois group of c(x) is either S3 or

A3; and it is S3 if and only if 4 is not a square in K. Then, in this case, the order

of Gf is divisible by 4 and 6 (Theorem 1.2 and the fact that Gf ∩ V4 is normal

in Gf and |Gf | = |Gf/(Gf ∩ V4)||Gf ∩ V4|. Hence Gf is either A4 or S4; but by

Theorem 1.3, Gf = S4. If 4 is a square in K, then obviously Gf = A4.

Conversely, let us assume Gf is either S4 or A4. We have to prove that c(x) is

irreducible over K. If c(x) is reducible over K, then either c(x) splits completely

over K or has an irreducible quadratic factor over K. In the first case, the order
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of Gf/(Gf ∩ V4) is 1 and in the second case, the order is 2. As the order of

Gf ∩ V4 = 1, 2, or 4, we get the order of Gf = 1, 2, 4 or 8, which is not possible as

Gf = S4 or A4. Hence c(x) is irreducible over K. �

Theorem 3.3. Let f(x), L,K, c(x),4, Gf be as in the previous theorem. Let us

assume c(x) is reducible over K, then we have

(i) c(x) splits completely over K if and only if Gf = V4.

(ii) If c(x) has an irreducible quadratic factor then

(a) Gf = D4 if and only if f(x) is irreducible over K(
√
4).

(b) Gf = C4 if and only if f(x) is reducible over K(
√
4).

Proof. Let us assume that c(x) splits completely over K, then α, β, γ ∈ K, hence

K(α, β, γ) = K. Therefore the field extension L|K(α, β, γ) and L|K are same. So

their Galois groups Gf ∩ V4 and Gf are same. Hence we get Gf = V4.

Conversely, if Gf = V4 then Gf ∩ V4 = V4. Hence Gf/(Gf ∩ V4) is trivial

group. Therfore K(α, β, γ) = K which means α, β, γ ∈ K. It follows that c(x)

splits completely over K. This proves (i).

Assume now that c(x) has an irreducible quadratic factor. Notice that in

view of (3.2), Theorem 3.2 and (i) above, the only possibilities left out for Gf

are C4 or D4. Let us assume that c(x) has a unique root say α in K. Then

K(α, β, γ) = K(
√
4) is a quadratic extension of K. We can view L as the splitting

field of f(x) over K(
√
4) and L|K(

√
4) is a Galois extension with Galois group

Gf ∩ V4. If Gf = D4 then Gf ∩ V4 = V4, which is a transitive subgroup of S4.

Therefore V4 acts transitively on roots of f(x) over K(
√
4). But by the Theorem

1.1 this is possible if and only if f(x) is irreducible over K(
√
4). Where as if

Gf = C4, then Gf ∩ V4 is non transitive subgroup of order 2 in V4. Therefore by

Theorem 1.1, f(x) is reducible over K(
√
4). This proves (ii). �

Combining the theorems (3.2) and (3.3) we get complete classification of the Galois

group of an irreducible separable quartic polynomial over a field K of characteristic

not equal to 2.

Example 3.1. Consider the polynomial x4−5 over Q. By Eisenstein’s criteria, it

is easy to see that this is irreducible over Q. The discriminant 4 = −256×53, and

c(x) = x3 + 20x. So Q(
√
4) = Q(

√
−5). As c(x) has unique root in Q, so Gf can

be C4 or D4 depending upon whether f(x) is reducible over Q(
√
−5) or not. The

roots of f(x) over C are ± 4
√

5 and ±i 4
√

5. None of these or their combinations are

in Q(
√
−5), and hence none of the quadratic factors of f(x) are in Q(

√
−5)[x]. It

follows that f(x) is irreducible over Q(
√
−5), and therefore Gf = D4.

In general it is tedious to determine whether f(x) is irreducible over K(
√
4)

or not. Kappe and Warren [7] have proved that instead of checking irreducibility

of the quartic polynomial it is sufficient to check irreducibility of two quadratic

polynomials over K(
√
4). We discuss this here.
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Let us go back to the case where c(x) has unique root say α = r1r2 + r3r4 in

K and Gf = C4 or D4 (Theorem 3.3, (ii)). We will take D4 = 〈(1324), (12)〉. The

reason is, if we take σ = (1324) and τ = (12) then σ(α) = α and τ(α) = α. Since

the generators of D4 fix α, therefore α is fixed by each of the elements of D4. For

the same reason, we take C4 = 〈σ〉 or
〈
σ−1

〉
.

Consider the elements r1 + r2, r3 + r4, r1r2 and r3r4 of L, where r1, r2, r3, r4

are the roots of an irreducible separable polynomial f(x) = x4+ax3+bx2+cx+d.

Let g(x) and h(x) be the polynomials having roots r1 + r2, r3 + r4, and r1r2, r3r4

respectively. Then

g(x) = (x− (r1 + r2))(x− (r3 + r4)) = x2 + ax+ b− α,

h(x) = (x− r1r2)(x− r3r4) = x2 − αx+ d. (3.8)

Since α ∈ K, g(x) and h(x) are polynomials over K.

Theorem 3.4 (Kappe, Warren). Let f(x) be an irreducible separable polynomial

of degree 4 over a field K of characteristic 6= 2 and assume that its resolvent cubic

c(x) has an irreducible quadratic factor. Then the Galois group f is C4 if and only

if g(x) and h(x), as defined in (3.8), are reducible over K(
√
4).

Proof. Suppose Gf = C4 = 〈σ〉 , where σ = (1324). Then L|K is a cyclic ex-

tension of degree 4 containing a unique quadratic extension of K. This field must

be K(
√
4) with Gal

(
K(
√
4)/K

)
=
〈
σ2
〉
, where σ2 = (12)(34). Note that the

elements r1 + r2, r3 + r4, r1r2 and r3r4 are fixed by σ2. Therefore they belong to

K(
√
4). Hence g(x) and h(x) both split over K(

√
4).

Conversely let us assume that g(x), h(x) both split over K(
√
4). Then r1 +

r2, r3+r4, r1r2 and r3r4 belong to K(
√
4). We shall prove Gf = C4. Observe that

c(x) splits completely over K(
√
4) as one root of c(x) is already in K and c(x) has

a quadratic irreducible factor over K which splits over K(
√
4). So β, γ ∈ K(

√
4).

Consider the polynomial k(x) = x2−(r1+r2)x+r1r2, having roots r1, r2. Note

that k(x) is a polynomial over K(
√
4). Let F be the splitting field of k(x) over

K(
√
4). Then F is a quadratic extension of K(

√
4). So we have K(

√
4) ⊆ F ⊆

L. As r1, r2, r1 + r2, r3 + r4, r1r2, r3r4, β, γ ∈ F , β − γ = −(r1 − r2)(r3 − r4) ∈ F .

Therefore r3 − r4 ∈ F and hence r3, r4 ∈ F . This means F = L, and hence

L is a quadratic extension of K(
√
4) which is itself a quadratic extension of K.

Therefore [L : K] = 4 and L contains a unique quadratic subfield. Hence L|K is

a cyclic extension and Gf = C4. �

Finally, we give a proof of the main theorem of this article.

Theorem 3.5 (Conrad, Keith [6]). Let f(x) = x4 + ax3 + bx2 + cx + d be an

irreducible quartic polynomial over a field K of characteristic 6= 2. Suppose c(x) =

x3 − bx2 + (ac− 4d)x− (a2d + c2 − 4bd) is the resolvent cubic of f(x) with roots



Member's copy - not for circulation 

82 RAKESH BARAI

α = r1r2 + r3r4, β = r1r3 + r2r4 and γ = r1r4 + r2r3 and 4 is the discriminant

of f(x). The following holds true.

cases c(x) is 4 in K is (α2 − 4d)4, (a2 − 4(b− α))4 Gf=

case-1 irreducible Not square S4

case-2 irreducible Square A4

case-3 reducible Square V4

case-4 reducible Not square square in K C4

case-5 reducible Not square one of them is not square in K D4

Proof. case-1, case-2 and case-3, when Gf = S4, A4, and V4, are clear. Only

case-4 and case-5, when Gf = C4 or D4, are required to be discussed. Consider

case-4. Suppose Gf = C4 =< σ >, where σ = (1324). Let g(x) and h(x) be as

defined in (3.8). If the root r1 + r2 of g(x) belongs to K, then its second root

r3 + r4 = σ(r1 + r2) = r1 + r2 - showing that g(x) has a double root; and hence its

discriminant d1 = a2−4(b−α) is zero. By the same argument, if h(x) is reducible

over K then its discriminant d2 = α2−4d is also zero. Hence we get d14 and d24
are squares in K. If g(x) and h(x) are irreducible over K then their discriminants,

d1 and d2 respectively, are non-squares in K. So their splitting fields are K(
√
d1)

and K(
√
d2) respectively. But as we saw, the splitting field of g(x) and h(x) is

K(
√
4), so both the splitting fields must be the same. This is possible if and only

if d14 and d24 are squares in K. Hence, in any case, we get Gf = C4 if and only

if (α2 − 4d)4 and (a2 − 4(b− α))4 are squares in K.

In view of the case-4 discussed just now, clearly the case-5, when Gf = D4, is true

if and only if not both of d14 and d24 are squares in K simultaneously, that is,

at least one of them is not a suare in K. �

Let us determine the Galois group of x4−5 over Q using above theorem. Here

c(x) = x(x2 + 20), having a root in Q. The discriminant 4 of the polynomial, is

−32000. g(x) = x2 − 5 and h(x) = x2. The discriminant d1 of g(x) is 20, hence

d14 < 0, which not a square in Q. So Gf = D4.

Let us have some examples. We consider irreducible polynomials over Q. We

will have the following conventions.

(a) The polynomial f(x) = x4 + ax3 + bx2 + cx+ d with integer coefficients is

irreducible polynomial over Q and has roots ri, 1 ≤ i ≤ 4.

(b) The resolvent cubic c(x) is as in (3.4) and 4 is the discriminant of f(x).

(c) α, β, γ defined as in (3.3) are the roots of c(x), where we assume α ∈ Q,

whenever c(x) has unique root in Q .

(d) To check c(x) is irreducible or not over Q, we use the following fact. Since

c(x) is monic with integer coefficients, hence all rational roots of c(x) are

integers. So the only possible roots of c(x) in Q are divisors of the constant

term.
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(e) The polynomials g(x) = x2 − αx+ d and h(x) = x2 + ax+ b− α are as in

(3.8). We will check whether (α2−4d)4 and (a2−4(b−α))4 are squares

or not in Q

f(x) c(x) and 4 (α2 − 4d)4 (a2 − 4(b− α))4 Gf

x4 + 3x3 −
3x− 2

x3 − x + 9,

irreducible

4 = −2183

- - S4

x4 + 4x− 1 (x − 2)(x2 +

2x + 8). 4 =

−162227, α =

2,

−162257

non-square

−162257 non-square D4

x4 + 8x+ 12 x3−48x−64,

irreducible

4 = 8434,

square

- - A4

x4 − 4x2 + 5 (x + 4)(x2 −
20), α = −4,

4 = 2710,

−2910 non

square

0 D4

x4 + 8x+ 14 (x − 8)(x2 +

8x+8) α = 8,

4 = 21172,

21472 21672 C4

x4 + 3x+ 3 (x + 3)(x2 −
3x − 3), α =

−3,

4 = 33527,

−34527 −2234527 D4

x4 + 4 x(x−4)(x+4) - - V4

4. Application

We now give an application of Theorem 3.5 by determining the Galois group

of the quartic polynomial f(x) = x4 + bx2 + d over a field K of characteristic 6= 2.

Note that if α is a root of f(x), then −α is also a root. Hence we assume that

the roots of f(x) are ±α,±β. If we put x2 = t, we get f(t) = t2 + bt+ d which is

reducible over K if and only if b2 − 4d is a square in K.

Let us assume that f(x) is irreducible separable over K. If c(x) is the resolvent

cubic of f(x) then c(x) = (x−b)(x2−4d) and its discriminant is4 = 16d(b2−4d)2.

Hence the Galois group Gf of f(x) can be V4, C4 or D4. The Galois group Gf =

V4 if and only if c(x) splits completely over K, that is, if and only if
√
d ∈ K

(equivalently αβ ∈ K). So now we assume that
√
d /∈ K and c(x) has a unique

root d in K. The polynomial g(x) and h(x) as in (3.8) are x2− bx+ d and x2. By

Theorem 3.5, Gf = C4 if and only if (b2− 4d)4 is a square in K, which is equiva-
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lent to d(b2 − 4d) is a square in K. Therefore we have the following theorem.

Theorem 4.1. Let f(x) = x4 + bx2 + d be an irreducible separable quartic poly-

nomial over a field K of characteristic 6= 2. Then c(x) = (x − b)(x2 − 4d) is the

resolvent cubic and 4 = 16d(b2− 4d)2 is the discriminant of f(x). Let Gf denote

the Galois group of this f then

(i) Gf = V4 if and only if
√
d ∈ K, or equivalently, if and only if αβ ∈ K.

(ii) If
√
d /∈ K then

(a) Gf = C4 if and only if d(b2 − 4d) is a square in K.

(b) Gf = D4 if and only if d(b2 − 4d) is not a square in K.

As an application, we will determine the Galois group of the minimal polyno-

mial of α =
√
a+ b

√
d over Q, where a, b, d ∈ Z, gcd(a, b) is a square free integer

and d is non-square in Z. We will assume that a+ b
√
d is not a square in Q[

√
d].

We note the following few points regarding such an α.

(a) The minimal polynomial of α over Q is f(x) = x4 − 2ax2 + a2 − b2d.

(b) The roots of f(x) are ±α, ±α′, where α′ =
√
a− b

√
d.

(c) The discriminant4 of f(x) is 256b4d2(a2−b2d) and resolvent cubic c(x) =

(x+ 2a)(x2 − 4(a2 − b2d)).

By Theorem 4.1, we can make the following conclusion regarding the Galois group

Gf of this f(x).

(i) Gf = V4 if and only if c(x) splits completely over Q, that is, a2 − b2d is a

square in Z. We can also express the Galois extension L of f(x) explicitly.

If a2− b2d = j2 for some j ∈ Z then L = Q
(√

2(a− j),
√

2(a+ j)
)

(refer

to [8] for a proof).

(ii) In case a2 − b2d is not a square in Z then

(a) Gf = C4 if and only if d(a2 − b2d) is square in Q. In this case, the

splitting field L of f(x) is a cyclic extension Q(α) of Q, i.e., L = Q(α).

(c) Gf = D4 if and only if d(a2 − b2d) is not a square in Q. In this

case the splitting field L of f(x) contains a quadratic field Q(
√
4) =

Q(
√
a2 − b2d), so L = Q(α,

√
a2 − b2d).

Here are some examples:

α Gf√
4 +
√

7 V4√
5 + 2

√
5 C4√

3 + 2
√

5 D4
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Abstract. Historically known as the Basel problem, evaluating the value

of the Riemann zeta function ζ(2) has resulted in numerous proofs, many of

which have been generalized to compute the function’s values at even positive

integers. We apply Parseval’s identity to the Bernoulli polynomials to find

such values.

1. Introduction

The search for the sum of all the reciprocal squares,∑∞

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · (1.1)

is considered to have begun with Pietro Mengoli (1626-1686), who posed the chal-

lenge in [13] in 1650. Eventually it became known as the Basel problem, largely

due to the attention given it by University of Basel professor Jakob Bernoulli

(1654-1705). Bernoulli is reported to have written of it, “If somebody should suc-

ceed in finding what till now withstood our efforts and communicate it to us we

shall be much obliged to him.”†
Bernoulli’s words convey the difficulty of the Basel problem, but his statement

is even more interesting given that Bernoulli himself discovered the key to solving

it. Without knowing the full significance of them, Bernoulli had derived formulae

which gave the numbers that would become known as the Bernoulli numbers.

These formulae were published in 1713, in his posthumous text, Ars Conjectandi,

but it would be Leonhard Euler (1707-1783) who would use these numbers to

finally answer Mengoli’s challenge.

Euler was made aware of the Basel problem by Johann Bernoulli (1667-1748),

his mentor and Jakob’s younger brother; in papers presented from 1731-36, Euler

∗ The major part of this project was completed while A. Ghorbanpour was partially supported

by a PIMS postdoctoral fellowship, held at the University of Regina.

† The origin of this statement is attributed to Tractatus de Seriebus Infinitis, a collection

Bernoulli made of his own work on infinite series that was published in 1689.

2010 Mathematics Subject Classification: 11M06, 11B68, 42A16.

Key words and phrases: Riemann zeta function, Parseval’s identity, Bernoulli polynomials,

Bernoulli numbers.
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expounded an original method of approximation to achieve the exact value of the

series and proved that the sum ∑∞

n=1

1

n2
=
π2

6
.

In addition, Euler discovered a second technique, which uses infinite products and

partial fraction decomposition for approximating values of infinite series (see [4]

for details of these publications). Euler eventually refined his methods to precisely

determine the sums of reciprocal series raised to even powers. Arising in the

computations are the numbers that Bernoulli discovered. Denoted as B2k, we see

Bernoulli numbers in the general formula
∞∑
n=1

1

n2k
=

(−1)k−1π2k22k−1

(2k)!
B2k, k ≥ 1. (1.2)

Up to this day no one knows the exact values of series of reciprocals raised to odd

powers. 1

The Basel problem and the study of infinite series underwent its next signif-

icant transformation due to Bernhard Riemann (1826-1866). In 1859, Riemann

wrote a fundamental paper [16] studying the function represented by the series∑∞

n=1

1

ns

in the region <(s) > 1. He showed this function admits an analytic continuation

to the entire complex plane, except at s = 1 where it has a simple pole. This ex-

tended function, denoted ζ(s), is called the Riemann zeta function. In his historic

paper, Riemann indicated how the study of the distribution of prime numbers is

intertwined with the study of ζ(s).

Following the success of Euler and with the importance Riemann imparted

on it, interest in the Riemann zeta function has continued; different approaches

to the Basel problem have led to several elementary methods for finding values of

ζ(2) and ζ(2k), where k is a positive integer [8, 21, 2, 10]. These approaches are

the result of seeing the problem from different perspectives furnished by various

branches of mathematics.

We will consider one of these methods from Fourier analysis. To evaluate∑
1
n2 , Parseval’s identity applied to f(x) = x is a common textbook technique

(for examples, see [18, p.198] and [20, p.440]). To apply the same approach for

even integer values ζ(2k), for all k ≥ 1, one requires the appropriate function

whose absolute value of nth Fourier coefficient is 1
nk . We found that the Bernoulli

polynomials are appropriate functions for obtaining values of ζ(2k).

The history of the Basel problem is much richer than we’ve been able to

present here. We encourage the reader to consider the resources for this paper’s

introduction, in particular [4] and [11].

1It is known that ζ(3) is an irrational number; this is due to Roger Apery [1]. Furthermore,

T. Rivoal in [17] proved that infinitely many of ζ(2k + 1), k = 2, 3, · · · are irrational.
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We have structured the paper in four sections. In section two, by following the

original work of Bernoulli, Bernoulli numbers and polynomials are introduced and

some of their properties are studied. The next section includes a theory of Fourier

coefficients and Parseval’s identity. Then a brief geometrical interpretation of this

identity is discussed by means of an introductory approach to Hilbert spaces. In the

last section, using properties of Bernoulli polynomials, their Fourier coefficients are

computed. Then Parseval’s identity is applied and the values of the zeta function

at even integers are computed (Theorem 3). The last section is concluded by some

remarks on our proof and related works in the literature. All sections are written

to be accessible to undergraduate math students and we have tried to keep with

the historical order.

Acknowledgment: We would like to thank Professors Masoud Khalkhali, Ram

Murty and Ján Minác for the valuable comments and encouragement that we

received from them.

2. Bernoulli Numbers and Polynomials

The starting point of the Bernoulli polynomials goes back to the sum of powers

of integer numbers. By the 6th Century B.C.E. the Pythagoreans knew how to

find the sum of the first natural numbers,∑m−1

n=1
n =

1

2
m(m− 1) =

m2

2
− m

2
. (2.1)

Archimedes (c.287-212 B.C.E.) discovered how to calculate the sum of squares:

[11] ∑m−1

n=1
n2 =

1

6
m(m− 1)(2m− 1) =

1

3
m3 − 1

2
m2 +

1

6
m. (2.2)

Finding sums of other powers began to reach its climax in the 17th Century,

with mathematicians such as Pierre de Fermat and Blaise Pascal coming closer to

the objective. Then, Jacob Bernoulli discovered the right way of looking at the

problem.

Let us first fix a notation2

Sp(m) :=
m−1∑
n=1

np. (2.3)

In the study of binomial coefficients, Bernoulli found the following identity3∑m−1

n=0

(
n

p

)
=

(
m

p+ 1

)
.

Note that when expanded, the summand of the left side, 1
p!n(n− 1) · · · (n− p+ 1),

will give a polynomial of degree p in n. The sums of each term of this polynomial

gives some Sk(m). Using this identity and by induction, Bernoulli found values

of Sp(m) for p = 1, · · · , 10 [6]. Furthermore, by an attentive examination of the

2Bernoulli in [6] looks for sums of first m numbers rather than m − 1. This will introduce

some slight differences between what we will find and what is available in Bernoulli’s notes.
3A very good exercise for the interested reader would be to attempt a combinatorial proof for

this identity.
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these formulae, he discovered the pattern for coefficients of Sp. This pattern is the

main focus of the following theorem.

Theorem 1. Let Sp be the quantity defined by (2.3). Then Sp(m)’s are polynomi-

als of order p+ 1 in m and there is a sequence of rational numbers {Bj}∞j=0 such

that

Sp(t) =
1

p+ 1

∑p

j=0
Bj

(
p+ 1

j

)
tp−j+1, p > 1. (2.4)

These numbers satisfy the following recursive relation

Bj = − 1

j + 1

∑j−1

l=0
Bl

(
j + 1

l

)
, B0 = 1. (2.5)

Proof. Let’s first find a recursive formula for Sp. To do so we will apply a simple

trick which is the change of index of summation in the definition of Sp from n to

n− 1:

Sp+1(m+ 1)− 1 =
m∑
n=2

np+1 =
m−1∑
n=1

(n+ 1)p+1

=

m−1∑
n=1

p+1∑
k=0

(
p+ 1

k

)
nk =

p+1∑
k=0

(
p+ 1

k

)
Sk(m).

The above equality can be used to write

(p+ 1)Sp(m) = Sp+1(m+ 1)− 1− Sp+1(m)−
p−1∑
k=0

(
p+ 1

k

)
Sk(m).

Using the simple fact that mp+1 = Sp+1(m+ 1)− Sp+1(m), we find the recursive

formula

Sp(m) =
1

p+ 1

(
mp+1 − 1−

p−1∑
k=0

(
p+ 1

k

)
Sk(m)

)
, (2.6)

where the initial value is given by S0(m) = m− 1. A direct result of this recursive

formula is that Sp is a polynomial of order p + 1 for every p, with rational coef-

ficients. From now on we will change the integer variable m to the general real

variable t.

To prove (2.4) we will use induction on p and construct Bj as induction pro-

ceeds. As for the base case, we set B0 = 1 and B1 = − 1
2 , then it is easily seen

that S1(t) is of the form given by (2.4).

Then, as the induction hypothesis, assume that there are rational numbers

{Bj}p−1j=0 such that for all k < p we have

Sk(t) =
1

k + 1

k∑
l=0

Bl

(
k + 1

l

)
tk−l+1, p > 1 (2.7)

One can readily see that Sk(1) = 0 and using the induction hypothesis (2.7), the

constants Bk, for k < p, satisfy the equality

Bk = − 1

k + 1

k−1∑
l=0

Bl

(
k + 1

l

)
, 1 ≤ k < p. (2.8)
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Now, substituting from (2.7) the formula for Sk into the recursive formula (2.6)

and noticing that while doing so we should use S0(t) = t− 1 = B0(t)− 1, we get

Sp(t) =
1

p+ 1

(
tp+1 −

p−1∑
k=0

(
p+ 1

k

)
1

k + 1

k∑
l=0

Bl

(
k + 1

l

)
tk−l+1

)
.

By setting a new variable j = p − k + l we can find the coefficient of tp−j+1 for

any 1 ≤ j ≤ p given by

−1

p+1

j−1∑
l=0

(
p+1

p−j+l

)(
p−j +l+1

l

)
Bl

p−j +l+1
=

(
p+1
j

)
p+1

(
−1

j+1

j−1∑
l=0

(
j+1

l

)
Bl

)
.

Now we can use (2.8) for any j < p; however, for j = p we let Bp be defined by

Bp = − 1

p+ 1

∑p−1

l=0

(
p+ 1

l

)
Bl.

Therefore we have

Sp(t) =
1

p+ 1

tp+1 +

p∑
j=1

(
p+ 1

j

)
Bjt

p−j+1

 .

Noting that B0 = 1, the induction step is complete. Observe that while proving the

induction step, we constructed the sequence Bp inductively such that the relation

(2.5) is satisfied. �

Definition 1. The constant Bj , obtained in the above theorem, is called the jth

Bernoulli number.4

In the early 1730s, while proving his summation formula, Euler also discovered

these numbers [9]. Among the many of his discoveries was a recursive formula for

finding the Bernoulli numbers, and a generating function. Here we shall use the

recursive formula (2.5) to show how the generating function can be computed.

Let G(x) be the generating function of the Bernoulli numbers, i.e. formally

G(x) =
∑∞
j=0

Bj

j! x
j . Then we have

G(x) =
∞∑
j=0

Bj
j!
xj = 1−

∞∑
j=1

1

(j + 1)!

j−1∑
l=0

Bl

(
j + 1

l

)
xj

= 1−
∞∑
j=1

j−1∑
l=0

Bl
(j + 1− l)!l!

xj

= 1−
∞∑
l=0

Bl
l!

∞∑
j=l+1

1

(j + 1− l)!
xj

= 1−
∞∑
l=0

Bl
l!

∞∑
j=2

1

j!
xj+l−1

4Bernoulli originally denoted B2 by A, and B3 by B, so on and so forth.
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= 1− 1

x

(∑∞

l=0

Bl
l!
xl
)(∑∞

j=2

1

j!
xj
)

= 1− (1/x)G(x) (ex − x− 1) .

Therefore G(x) = 1− (1/x) (ex − x− 1)G(x), which implies that

G(x) = x/(ex − 1). (2.9)

From (2.9) one can find

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, B7 = 0, · · · .

Note that G(x) − (− 1
2x) = x(ex+1)

2(ex−1) is an even function. This implies that all the

odd Bernoulli numbers, B2k+1 for k ≥ 1, are zero (B1 is the exception).

Definition 2. The derivative of the polynomial Sp(t) is called the pth Bernoulli

polynomial and we denote it by Bp(t).

Bernoulli polynomials are monic polynomials and they can be written in terms

of Bernoulli numbers as follows (derive (2.4)):

Bp(t) :=
∑p

k=0
Bk

(
p

k

)
tp−k, k ≥ 0. (2.10)

Using (2.10) and (2.9), one can easily find the generating function of the Bernoulli

polynomials
G(x, t) =

∑∞

p=0
Bp(t)(x

p/p!) = xetx/(ex − 1). (2.11)

Examples of the first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t− (1/2), B2(t) = t2− t+ (1/6), B3(t) = t3− (3t2/2) + (t/2).

By differentiating (2.10) we have

B′p(t) = pBp−1(t), p ≥ 1. (2.12)

As a result, we have S′p(t) = B′p+1(t)/(p+ 1), which can be used to write the sums

of powers in terms of Bernoulli polynomials

Sp(m)=Sp(m)− Sp(0)=

∫ m

0

S′p(t)dt=

∫ m

0

B′p+1(t)

p+ 1
=

1

p+ 1
(Bp+1(m)−Bp+1(0)).

(2.13)

Additionally, (2.10) readily shows Bp(0) = Bp. Moreover, by (2.13) we have

0 = Sp(1) = (1/(p+ 1))(Bp+1(m)−Bp+1(0)).

Therefore,
Bp(1) = Bp(0) = Bp, p ≥ 2. (2.14)

The reader can refer to [3] for more details and more identities involving Bernoulli

numbers and polynomials.

3. Fourier Series and Parseval’s Identity

In this section, we will introduce Fourier coefficients and Parseval’s identity

which play a central role in our strategy to find values of the zeta function at even

integers. Fourier analysis, at its original form, is concerned with the decomposition

of functions as infinite sums of trigonometric functions.
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This branch of mathematical inquiry arose following Joseph Fourier (1768-

1830) who, motivated by a need for formulae that could model the conduction of

heat, used this technique to find real-valued solutions of functions; they are also

used to measure frequencies of vibrations.

Parseval’s identity is named for Marc-Antoine Parseval (1755-1836), and deals

with summability of the Fourier coefficients. From a different perspective, both of

these tools are among the first versions of more abstract theory, that is the theory

of Hilbert spaces. We have chosen the latter to present the topic here; however,

to avoid the technical complications we shall not include proofs and instead show

similar results in the finite case to help the reader develop the right intuition for

the topic.

Definition 3. Let f be an integrable function on [0, 1] then the nth Fourier coef-

ficient cn(f) of f is defined by

cn(f) := 〈f, en〉 =

∫ 1

0

f(t)e−2πintdt, n ∈ Z.

To understand a geometric meaning of the Fourier coefficients we need to see

them in the general setting of Hilbert spaces, which are complex vector spaces

equipped with a Hermitian inner product with complete topology. Further intro-

duction to Fourier analysis in Hilbert space can be found in [19]. Let’s first see the

finite dimensional versions of such spaces V = Ck with the inner product given by

〈(v1, · · · , vk), (w1, · · · , wk)〉 =
∑k

j=1
vjwj .

Here wj denotes the complex conjugate of the complex number wj . On such vector

space we can define the length of vectors by

‖v‖ :=
√
〈v, v〉, v ∈ V. (3.1)

Let en, for all 1 ≤ n ≤ k, denote the vector with 1 in the nth component and zero

in all other components. The set of vectors {en}mn=1 form a so-called orthonormal

basis for V ; that is,

(1) they are orthonormal: 〈en, em〉 = δnm =

1 m = n

0 m 6= n
;

(2) every vector in V can be written as a linear combination of en’s.

The important property of an orthonormal basis, in particular {en}, is that the

coefficients of en in the linear combination which gives the vector v ∈ V is given

by the inner product. In other words, if v =
∑k
m=1 cmem then

〈v, en〉 = 〈
∑k

m=1
cmem, en〉 =

∑k

m=1
cm〈em, en〉 =

∑k

m=1
cmδnm = cn.

Moreover, the length of a vector can also be computed using its inner product by

en as follows

‖v‖2 = ‖
∑k

m=1
〈v, em〉em‖2 =

∑k

n=1
|〈v, en〉|2. (3.2)
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This equality is nothing but the Pythagorean theorem in higher dimensional Her-

mitian spaces.

To come back to our case, where the Fourier coefficients can be obtained, we

need infinite dimensional complete inner product spaces, called Hilbert spaces.

Consider the linear space

H =

{
f : [0, 1]→ C| f is measurable and

∫ 1

0

|f(t)|2dt <∞
}
.

Here the functions are going to play the role of vectors and the inner product is

given by

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.

The norm of a function (called L2-norm) is defined as (3.1) using this inner prod-

uct. Unlike V , H is infinite dimensional, meaning that we need infinitely many

elements {en}∞j=1 to form a basis. Also, we may encounter infinite sums while try-

ing to write linear combinations of elements, so a notion of convergence of linear

combinations will be needed. In particular, the second criteria in the definition of

orthonormal basis should be replaced by

(2’). Every vector in H is the limit of (possibly infinite) linear combinations of

ej ’s.

As an example, the functions en(t) := e2πint, n ∈ Z, form an orthonormal

basis for H (see examples in [18, p.187]). With all these in hand it is obvious

that cn(f) = 〈f, en〉. Moreover, an infinite dimensional version of the computation

(3.2) can be performed and the result is known as Parseval’s identity (for a proof

see [18, p.191]).

Theorem 2 (Parseval’s identity). Suppose f is a Riemann-integrable function.

Then ∫ 1

0

|f(x)|2dx =

∞∑
−∞
|cn(f)|2. (3.3)

Similar to (3.2), Parseval’s identity can be considered as the generalization

of the Pythagorean theorem in infinite dimensional space H, where the absolute

value of the Fourier coefficients |cn(f)| play the role of length of the orthogonal

sides of (an infinite dimensional) right triangle, and the sum of their squares is

equal to the square of length of the function (hypotenuse) given by the integral.

Remark 1. At the beginning of the 20th Century David Hilbert (1862-1943) in-

troduced abstract inner product spaces to embrace existing theories of function

spaces, such as Fourier analysis, and to develop new tools to study such notions as

integral operators. In particular, these abstract spaces, known as Hilbert spaces,

allow for the manipulation of functions which otherwise would not meet the con-

ditions of convergence and continuity required to perform such manipulations.
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4. The Main Theorem

In this section we show how the values of ζ(2k) are obtained by applying

Parseval’s identity to the Fourier coefficients of Bernoulli polynomials. We first

find the Fourier coefficients of Bernoulli polynomials in Lemma 1, and then their

L2 norm. In both the following lemmas, the main idea lies in the following simple

computation for any differential function f on [0, 1] which one can easily obtain

by integration by parts and (2.12) and (2.14):∫ 1

0

Bk(t)f ′(t)dt = (f(1)− f(0))Bk − k
∫ 1

0

Bk−1(t)f(t)dt, k ≥ 2,

while for k = 1 we have
∫ 1

0
B1(t)f ′(t)dt = (f(1) + f(0))B1 −

∫ 1

0
f(t)dt.

Lemma 1. For all integers k ≥ 1,

cn(Bk) =

 −k!
(2πin)k

, n 6= 0;

0, n = 0.
.

Proof. Observe that by the definition of the Bernoulli polynomials in terms of Sp

we have
∫ 1

0
Bk(t)dt = Sp(1) − Sp(0) = 0, so that c0(Bk) = 0, k ≥ 1. Let n 6= 0.

By integration by parts

cn(Bk) = Bk(t)
e−2πint

−2πin

]1
0

−
∫ 1

0

B′k(t)
e−2πint

−2πin
dt,

in which the first term vanishes for k ≥ 2 because of (2.14); and applying (2.12)

it reduces to

cn(Bk) =
k

2πin

∫ 1

0

Bk−1(t)e−2πint dt =
k

2πin
cn(Bk−1). (4.1)

Now, for k = 1 this gives cn(B1) = −1/2πin and combining this with (4.1) we

recursively get cn(Bk) = −k!/(2πin)k for all k. �

Remark 2. Another interesting approach to find the Fourier coefficients of Bernoulli

polynomials is to use their generating function (2.11). Being careful with the con-

vergence conditions, one needs to see that∫ 1

0

G(x, t)e−2πintdt =
∑∞

p=0
cn(Bp)

xp

p!
.

To obtain L2 norm of Bernoulli polynomials, we first shall find a recursive

expression for the integration of products of two Bernoulli polynomials.

Lemma 2. For all integers 1 ≤ k ≤ l,∫ 1

0

Bk(t)Bl(t)dt =
(−1)k−1l!k!Bl+k

(l + k)!
.

Proof. Denoting the left side by Ak,l, using (2.12) and integrating by parts we get

Ak,l =

∫ 1

0

Bk(t)
B′l+1(t)

l + 1
dt = Bk(t)

Bl+1(t)

l + 1

]1
0

−
∫ 1

0

B′k(t)
Bl+1(t)

l + 1
dt



Member's copy - not for circulation 

96 ASGHAR GHORBANPOUR AND MICHELLE HATZEL

in which the first term on the right vanishes for k ≥ 2 because of (2.14); and

applying (2.12) it reduces to

Ak,l =
−k

(l + 1)

∫ 1

0

Bk−1(t)Bl+1(t)dt =
−k

(l + 1)
Ak−1,l+1. (4.2)

Now, for k = 1 we have

A1,l =
Bl+1(0)

l + 1
(B1(1)−B1(0))−

∫ 1

0

Bl+1(t)

l + 1
dt =

Bl+1

l + 1
, (4.3)

and hence the desired result Ak,l = ((−1)k−1l! k! Bl+k)/(l + k)!, 0 < k ≤ l is

obtained recursively by combining (4.2) and (4.3). �

Finally, we have the main theorem.

Theorem 3. For any positive integer k ≥ 1, we have

ζ(2k) =
(−1)k−1π2k22k−1

(2k)!
B2k. (4.4)

Proof. Applying Parseval’s identity to Bk, k ≥ 1, we have∫ 1

0

|Bk(t)|2dt =
∑∞

−∞
|cn(Bk)|2.

The value of the left side, given by Lemma 2, is equal to∫ 1

0

Bk(t)Bk(t)dt = ((−1)k−1(k!)2B2k)/(2k)!. (4.5)

The sum on the right side, provided by Lemma 1, gives us∑∞

−∞
|cn(Bk)|2 =

∑
n6=0

∣∣∣∣ −k!

(2πin)k

∣∣∣∣2 = 2
(k!)2

(2π)2k

∑∞

n=1

1

n2k
. (4.6)

From (4.5) and (4.6) we get (4.4). �

We would like to finish this section with a few remarks on our proof and other

related works.

Remark 3. Our work is not the first one which extends a method to evaluate the

zeta function at two, to a general method to find ζ(2k), and in it to bring in

Bernoulli polynomials; for example, see [7] where a telescoping series technique to

find ζ(2), offered in [5], is generalized to find ζ(2k) using Bernoulli polynomials.

Remark 4. Despite the very central role of Bernoulli polynomials in our work,

there is nothing that made them unique in this process. In fact, there are infinitely

many families of functions fk that can do the job. In fact, every function fk whose

Fourier coefficients are different than that of Bernoulli polynomials by a phase

factor, cn(fk) = eiθn,kcn(Bk) with θn,k ∈ [0, 2π], can be used here. On the other

hand, a closer look at our proof reveals that property (2.12) is critical to it. For

example, fk(x) = xk is another family of functions with the same property.5

5While preparing this paper, we became aware of the recently-posted paper [12] where Par-

seval’s identity is applied on xk to find ζ(2k).
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Remark 5. Another technique in evaluating the zeta function at even integers

involves the pointwise convergence of Fourier series
∑
n∈Z cn(f)e2πint to f(t). For

a beautiful instance of this technique see [15].

Remark 6. The functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1− s) (4.7)

of the Riemann zeta function, where Γ is the gamma function, plays a very im-

portant role in the study of the Riemann zeta function. The functional equation

relates the value of the zeta function at s to its value at 1− s. Hence we can now

see that

ζ(−2k + 1) = −B2k/2k, k ≥ 1.

In fact, this is true for all negative integers and the odd Bernoulli numbers being

zero gives the trivial zeros of the Riemann zeta function at negative even inte-

gers. An interesting study, investigating the relation between the values of zeta at

negative integers and functions Sp can be found in [14].
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Abstract. In this expository article we discuss the concept of transversality

and use it to explain why a compact hypersurface in Rn is orientable. In

order to keep the discussion as elementary and nontechnical as possible we

have taken the liberty of placing our emphasis on illustrative examples and

geometric ideas involved rather than complete formal proofs.

1. Introduction

The notion of a smooth (or differentiable) manifold arose naturally from the study

of curves and surfaces in three-dimensional Euclidean space and ranks among the

most fundamental concepts of modern mathematics. Precise definitions will be

given below but let us first take an informal look. Roughly speaking, a smooth

manifold X of dimension k in Rn is a subset of Rn which, for the purposes of

differential calculus, may be locally regarded as an open subset of Rk (possibly in

several different ways). If we take for instance the unit sphere S2 = {(x, y, z) ∈
R3 : x2 + y2 + z2 = 1}, the upper hemisphere {(x, y, z) ∈ S2 : z > 0} may be

identified with an open disc in the plane Z = −1 by orthogonally projecting it

onto the plane as shown in Figure 1(A) on the next page. In a similar fashion

the lower hemisphere (Figure 1(B) on the next page), or the left and the right

hemispheres, may all be regarded as open discs by orthogonally projecting them

onto appropriate planes. Thus, while the whole sphere at once cannot be regarded

as an open subset of a plane, any small enough piece of it may be so regarded.

To study smooth manifolds it is necessary to extend the basic concepts and

methods of calculus to manifolds. This can be done by using the local identification

of the manifold as open sets in Rk. It is, for example, clear how to make sense of a

smooth map between two manifolds: locally any such map can be identified with a

map between open sets in Euclidean spaces and we will say that the original map

is smooth if this later map is smooth (in the ordinary sense). A straightforward

application of the chain rule ensures that this definition of smoothness of maps is

independent of the local identification chosen. A very important construction for

the study of smooth manifolds is that of the tangent space at each point of the

2010 Mathematics Subject Classification : Primary 43A85; Secondary 22E30.

Key words and phrases: Hypersurface, transversality, orientability.

c© Indian Mathematical Society, 2018 .
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(a) (b)

Figure 1. Sphere

manifold which is the infinitesimal linear approximation to the manifold near that

point. This allows us to make use of the concepts from linear (and multilinear)

algebra in an essential way in the study of smooth manifolds. In particular, it is

possible to linearize smooth maps and extend all the key local results of calculus

like inverse and implicit function theorems to the manifold setting.

A manifold of dimension n − 1 in Rn is called a hypersurface in Rn. Thus a

curve (one-dimensional manifold) in the plane or a sphere in three-dimensional

Euclidean space are some examples of hypersurfaces. It is sometimes necessary to

give a direction or orientation to a hypersurface. For example, the familiar Stokes’

formula in vector calculus uses such a notion. If X is a hypersurface in Rn and

x is a point in X, the tangent space TxX is a n − 1 dimensional linear subspace

of Rn. Therefore there are exactly two unit normal vectors to the hypersurface

X at x. We say that a loop α : [0, 1] → X is orientation reversing if there exists

a unit normal vector to X at α(0) which, when transported continuously along

α while keeping it unit normal to X, comes back to the opposite unit normal at

α(1) = α(0). By definition, X is orientable if there does not exist any orientation

reversing loop in X. A moment’s thought will easily convince the reader that a

plane or a sphere in R3 are some examples of orientable surfaces and so is a circular

cylinder or a torus. However not all surfaces in R3 are orientable. The simplest

such example is provided by the so called Mobius band. It is possible to write down

equations for this set but it is much easier to construct a paper model of it by

taking a rectangular sheet of paper and identifying a pair of opposite edges after

giving it a half-twist. See Figure 2 on the next page. A little experimentation with

the paper model will convince the reader that the central circle is an orientation

reversing loop.

In this example note that the boundary circle is not part of the Mobius band
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Figure 2. Mobius Strip

(otherwise it will not be a manifold in our sense) and thus the Mobius band is not

compact. The purpose of this article is to explain the following

Theorem. Every compact hypersurface in Rn must be orientable.

A proof due to Hans Samelson of this theorem (see [6]) based on transver-

sality theory will be sketched in section 3. A simple but interesting consequence

of the theorem is given after the proof. For the proof of the theorem it is nec-

essary to consider a generalisation of the notion of manifolds called manifolds-

with-boundary. Just as a manifold is locally modelled on open subsets in some

Euclidean space, a manifold-with-boundary is modelled on open subsets of the

half-space Hk = {(x1, x2, . . . , xk) ∈ Rk : xk ≥ 0}.
For a manifold-with-boundary, each point has a (relative) neighborhood that

can be identified either with an open subset in intHn (in which case we say that

the point in question is an interior point) or with an open subset of Hn in such

a way that the point is identified with some point in ∂Hn (in which case we say

that the point is a boundary point.). The set of all boundary points constitutes the

boundary of the manifold, which is itself a (boundaryless) manifold of dimension

one less than that of the original manifold. This is illustrated in Figure 3. Most

of the concepts that we have discussed for manifolds extend to manifolds-with-

boundary.

Figure 3. Cylinder S1 × R

We will now give some definitions.

Let Rn denote the n-dimensional Euclidean space and let U and V be two

open subsets in Rn. A map f : U → V is called smooth if it has continuous partial

derivatives of all orders on U. For our discussion below, it is necessary to be able

to talk about smoothness for maps that are defined on arbitary subsets of Rn. Let

X ⊆ Rn. A map f : X → Rm is said to be smooth if for every x ∈ X there exist



Member's copy - not for circulation 

102 H. A. GURURAJA AND B. SUBHASH

an open set U ⊆ Rn and a smooth map F : U → Rm such that F |U∩X= f. Thus

a map defined on an arbitrary subset is smooth if it can be locally extended to

a smooth map around each point of the subset. A map f : X → Y is called a

diffeomorphism if f is bijective and both f and f−1 are smooth maps. We are

now in a position to define manifolds precisely.

A subset X in Rn is called a smooth n-dimensional manifold if each x ∈ X
admits a (relative) neighborhood U ⊆ X and a diffeomorphism φ : U → V where

V is an open subset of Rn. Such a pair (U, φ) is called a chart about x. An atlas

for X is a collection of charts {(Ui, φi)} such that ∪iUi = X. The maps φj ◦ φ−1i ,

which are diffeomorphisms between certain open subsets in Rn, are called transition

functions of the atlas. An atlas for a manifold thus provides a means for studying

the manifold in a piece-by-piece manner.

Let us see some examples of smooth manifolds.

(i) Any open subset of Rn is a manifold of dimension n.

(ii) Spheres: The n-dimensional Sphere Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 :
∑
x2i =

1} is a smooth n-dimensional manifold. In order to see this, let x = (x1, x2, . . . ,

xn+1) ∈ Sn. There exists an i such that 1 ≤ i ≤ n + 1 and xi 6= 0. If xi >

0, let U = {y = (y1, y2, . . . , yn+1) ∈ Sn : yi > 0}; otherwise let U = {y =

(y1, y2, . . . , yn+1) ∈ Sn : yi < 0}. If D = {v ∈ Rn : ‖v‖ < 1} and φ : U →
D is defined as φ(y1, y2, . . . , yn+1) = (y1, y2, . . . , yi−1, yi+1, . . . , yn+1), then (U, φ)

provides a chart about x, as can be easily checked. This construction has already

been illustrated for the special case n = 2 in Figure 1.

(iii) Our next example is a general construction of building new examples out of

the old ones. If M and N are two smooth manifolds then their cartesian product

X × Y is a smooth manifold of dimension equal to dimM + dimN. If {(Ui, φi)}
and {(Vj , ψj)} are atlases for X and Y then the collection {(Ui × Vj , φi × ψj)}
provides an atlas for X×Y. An immediate consequence of this construction is that

the n-dimensional Torus Tn = S1 × S1 × . . .× S1 ⊆ R2n is a smooth manifold of

dimension n. See Figure 4 for the 2-dimensional case.

Figure 4. Torus

Let f : X → Y be a map between smooth manifolds. We say that f is smooth

at x ∈ X if the map ψ ◦ f ◦ φ−1 : U → V is smooth at 0. Here (U, φ) is a chart

about x in X and (V, ψ) is a chart about f(x) in Y. This is clearly independent of

the choice of the charts chosen. The map is called smooth if it is smooth at every

point of the domain.



Member's copy - not for circulation 

ON THE ORIENTABILITY OF COMPACT HYPERSURFACES IN EUCLIDEAN SPACE 103

Let X be a smooth manifold and x ∈ X. Let TxX = {σ′(0)| σ : (−ε, ε) →
X smooth and σ(0) = x}. Thus, TxX is the set of all tangent vectors to curves

on X which pass through the point x. It is not difficult to show that TxX =

Dφ−1(0)(Rk) for any chart φ about x with φ(x) = 0. Thus the set TxX is a

k-dimensional linear subspace of Rn, which we call the tangent space to X at x.

Every smooth map f : X → Y induces (for any x ∈ X) a linear map Df(x) :

TxX → Tf(x)Y which is defined as follows:

Df(x)(v) = (f ◦ σ)′(0),

where σ : (−ε, ε)→ X is any smooth curve with σ(0) = x and σ′(0) = v.

Certain maps play a special role in differential topology. A map f : X → Y

is called a submersion if its differential map Df(x) : TxX → Tf(x)Y is surjective

for every x ∈ X. A point y ∈ Y is called a regular value of f if the map Df(x) :

TxX → TyY is surjective for each x ∈ f−1(y). A fundamental theorem of topology

(Sard’s theorem) asserts that the set of regular values of any smooth map is dense.

Let X be a smooth k-dimensional manifold. We say that a subset Z of X

is a submanifold of X of dimension l if for any point z ∈ Z, there exist a chart

(U, φ) about z in X such that φl+1 = φl+2 = . . . = φk = 0 on U ∩ Z. In this case,

Z itself inherits the structure of a smooth l-manifold with the collection {(U ∩
Z, (φ1|U∩Z , φ2|U∩Z , . . . , φl|U∩Z))} serving as an atlas for Z. The codimension of Z

in X is the number k− l. Submanifolds of codimension 1 are called hypersurfaces.

The importance of regular values comes from the following property which is

proved using the inverse function theorem from calculus:

Let f : X → Y be a smooth map and let y ∈ Y be a regular value of f. Then the

inverse image Z = f−1(y) is a submanifold X with codimension dimY. Moreover,

TzZ = kerDf(z) : TxX → TyY for any z ∈ Z.
Let Hk = {(x1, x2, . . . , xk) ∈ Rk : xk ≥ 0}. We call Hk the k-dimensional half-

space. A subset X of Rn is called a k-dimensional smooth manifold-with-boundary

if each x ∈ X admits a (relative) neighbourhood U and a diffeomorphism φ : U →
V where V is an open subset of the half-space Hk. Concepts like tangent space

and submanifolds that were discussed for manifolds readily extend to manifolds-

with-boundary. In the proof of the theorem we will also make use of the following

classification theorem for compact one dimensional manifolds-with-boundary. We

refer the reader to [1] for a proof at the expository level.

Fact 0. (Classification of compact one dimensional manifolds-with-boundary.) Any

compact and connected one dimensional manifold-with-boundary is diffeomorphic

to either the circle S1 (which has empty boundary) or the closed interval [0, 1].

2. Transversality
In this section we will introduce and explain the concept (originally due to the

French mathematician René Thom) that will play a key role in the proof of our

theorem. We should mention that this important idea has many other applications
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in differential topology. For a thorough discussion of the concept of transversality

(which is merely outlined in this article) and its many applications in topology we

refer the interested reader to the excellent book [3].

Given a vector space and two of its subspaces, we say that these subspaces

intersect transversally (or, are in general position) if the sum of the subspaces

equals the original space. Note that we do not require that the vector space be the

direct sum of the subspaces, only that the subspaces together span the space. As

an example, observe that any two coordinate planes in R3 intersect transversally.

We now extend this notion to manifolds and maps. Unless otherwise mentioned

all our manifolds below are boundaryless.

Definition. Let X and Y be manifolds and f : X → Y be a smooth map. Let

Z ⊂ Y be a submanifold. We say that f is transversal to the submanifold Z

(written f t Z) if for every x ∈ f−1(Z) the subspaces Df(x)(TxX) and Tf(x)Z of

Tf(x)Y intersect transversally, i. e. ,

Df(x)(TxX) + Tf(x)Z = Tf(x)Y.

If Z and W are two submanifolds of a manifold Y we say that they intersect

transversally (written W t Z ) if the inclusion map i : W → Y is transversal to

Z. In other words, TwW + TwZ = TwY for every w ∈ W ∩ Z. Observe that this

later condition is symmetrical in W and Z. See the pictures in the following pages

for examples of transversal and non-transversal intersections.

Consider now a special case. Let y0 be a point in Y and let Z = {y0}. Then

f t Z if and only y0 is a regular value of f. Thus the notion of transversality may

be viewed as a generalisation of the notion of regular values. In the later case we

have seen that the level set f−1(y0) is a submanifold of X of codimension equal

to dimY. This raises the following question:

If f : X → Y is a map and Z is a submanifold of Y and if f t Z, is it true

that f−1(Z) is a submanifold of X?

The answer is yes and can be seen as follows. Let x ∈ f−1(Z) and y = f(x).

Assume that Z is a submanifold of Y of codimension l. Then, in some (relative)

neighborhood of the point y, Z can be expressed as Z = g−1(0) for some submer-

sion g from some neighborhood of y in Y into Rl. Therefore, in a neighborhood of

x, f−1(Z) equals f−1(g−1(0)) = (g ◦f)−1(0). Thus f−1(Z) is (locally) a submani-

fold of X of codimension l if 0 is a regular value of g◦f. This latter condition is that

D(g◦f)(x)(TxX) = Rl, which is equivalent to Dg(f(x))(Df(x)(TxX)) = Rl. Since

g is a submersion, Dg(f(x))(Tf(x)Y ) = Rl and KerDg(f(x)) = Tf(x)Z. Therefore,

if Df(TxX) + Tf(x)Z = Tf(x)Y, then the required condition is certainly satisfied.

This, however, is just the transversality condition f t Z.

One immediate consequence of the above is that the intersection Z ∩W of

two submanifolds Z and W of a manifold Y is again a submanifold provided the

intersection is transversal. In this case the codimension of Z ∩W in Y is the sum
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of the codimensions of Z and W in Y.

The notion of transversality can be extended to manifolds-with-boundary us-

ing the same definition given above. For a manifold-with-boundary X and a

smooth map f : X → Y, we denote by ∂f the restriction map f |∂X : ∂X → Y. An

argument similar to the one given above establishes the following important result

for manifolds with boundary.

Fact 1. Let X be a manifold-with-boundary, Y, Z be (boundaryless) manifolds and

Z is a submanifold of Y. Assume that the maps f : X → Y and ∂f : ∂X → Y are

transversal to Z. Then f−1(Z) is a submanifold with boundary of X of codimension

dimY − dimZ and

∂(f−1(Z)) = f−1(Z) ∩ ∂X.
Observe that under the stated hypothesis the boundary of f−1(Z) is contained in

that of X. In fact, this condition is what motivates the hypothesis of above result.

See Figure 5 for examples of manifolds intersecting transversally. Observe that

in each of these cases the intersection is again a manifold.

Figure 5. Transversal Intersections

Below we give some examples of non-transversal intersections (see Figure-6

on the next page). Observe that an arbitrarily small perturbation of one of the

manifolds will make the intersection transversal.

We will need another result from transversality theory which we call transver-

sal extension property.

Fact 2. Let X be a manifold-with-boundary, Y, Z be (boundaryless) manifolds and

Z is a submanifold of Y which is also closed as a subset of Y. If for the map

f : X → Y the boundary map ∂f : ∂X → Y is transversal with respect to Z, then

there exists a map g : X → Y such that ∂g = ∂f and g is transversal to Z.
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(a) (b)

(c)

Figure 6. Non-transversal Intersections

The main idea behind the proof of Fact 2 is the fact that transversality is a

generic property. To make this idea precise we need the notion of deformations

of maps. Suppose that X is a manifold with boundary and Y is a (boundaryless)

manifold. Two smooth maps f, g : X → Y are said to be (smoothly) homotopic

if there exists a smooth map H : X × [0, 1] → Y such that H(x, 0) = f(x) and

H(x, 1) = g(x) for every x ∈ X. In this case we say that H is a (smooth) homotopy

between the maps f and g. If we think of the parameter t as time variable then this

definition conforms to our intuitive idea of smoothly deforming one map into an-

other. It turns out that if f : X → Y is a smooth map and if Z is a (boundaryless)

submanifofd of Y then there exists a smooth map g : X → Y which is homotopic

to f and is transversal to Z. Thus any smooth map can be perturbed slightly so

as to make it transversal with respect to any prescribed (boundaryless) submani-

fold. The crucial ingredient in the proof of this fact is Sard’s theorem (which was

mentioned earlier in section 2) which says that regular values are generic for any

smooth map. (Sard’s theorem has many other important applications and may

be considered as a foundational result in topology.) Moreover, when Z is a closed

subset of Y, the map f can be perturbed to a smooth map g without disturbing

it on the boundary ∂X in such a way that g t Z. (See [3], p. 67-73, for complete

details of the proof.)

3. Proof of the theorem

We will now outline the proof of the theorem. We will actually prove the

following slightly more general result:

Let Z be a smooth (boundaryless) hypersurface in Rn which, as a subset of
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Rn, is closed. Then Z must be orientable.

Proof is by contradiction. Assume that Z is nonorientable and take any

orientation-reversing loop α : [0, 1] → Z. Thus, any unit normal vector to Z

at α(0), when transported continuously along α while keeping it unit normal to Z,

comes back to the opposite unit normal at α(1) = α(0). Fix a (sufficiently small)

positive number ε. By choosing a point along each unit normal at α(t) which is

at a distance ε from the base point we obtain a smooth curve in Rn and, finally,

by connecting the ends of this curve by a straight line segment we obtain a closed

curve which intersects Z at exactly one point. This curve is not smooth but it can

be smoothened to obtain a smooth closed curve γ : S1 → Rn which intersects Z

at precisely one point where the intersection is transversal.

Since Rn is simply connected the curve γ can be smoothly deformed to a

point. Thus there exists a smooth homotopy H : S1 × [0, 1] → Rn such that

H(x, 0) = γ(x) and H(x, 1) = y for every x ∈ S1. (Here y is some point in Rn.)

Consider now the smooth map F : S1 × [0, 1] → D2 defined by

F (x, t) = (1− t)x. This is a smooth quotient map which is injective on S1 × [0, 1)

and maps S1×{1} into {0}. Since H is constant on S1×{1}, F induces a smooth

map f : D2 → Z such that f |∂D2 = γ. This is the stage where transversality

enters the proof. By the transversal extension theorem there exists a smooth

map g : D2 → Rn transversal to Z and g|∂D2 = γ. Since g−1(Z) is a smooth

one-dimensional submanifold-with-boundary of D2, it must consist of a disjoint

union of a finite number of circles in the interior of D2 and arcs whose ends lie on

∂D2. Clearly, the total number of such end points must be even. This, however,

contradicts the fact that ∂(g−1(Z)) = g−1(Z) ∩ ∂D2 is just one point.

Remarks.

1. The above proof works verbatim in the case where Rn is replaced by any smooth

manifold which is simply-connected. Thus any (boundaryless) hypersurface in

any simply-connected (boundaryless) manifold must be orientable provided it is a

closed subset of the manifold.

2. The definition of orientability of a hypersurface that we have given can be shown

to be equivalent to the following purely intrinsic property (which makes sense for

manifolds of arbitrary codimension):

There exists an atlas for which all the transition maps are orientation preserv-

ing, i. e., det(φj ◦ φ−1i ) > 0 for any two charts φi and φj in the atlas.

Using this later definition one can show that the following 2-manifolds are nonori-

entable:

Real Projective Plane RP 2. This is the image of S2 in R4 under the mapping

f : R3 → R4 given by f(x, y, z) = (x2 − y2, xy, xz, yz).
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Klein Bottle K. This is the image of R2 in R4 under the map g : R2 → R4 given

by g(x, y) = ((cos y + 2) cosx, (cos y + 2) sinx, sin y cosx/2, sin y sinx/2).

Both RP 2 and K are compact. Since they are nonorientable, it follows immediately

from the theorem that they can not be realised as surfaces in R3.

3. The examples of Klein bottle and the real projective plane above show that, in

general, a k-manifold cannot be realised as a manifold in R2k−1. If the manifold

is assumed to be compact and orientable then it is known that it can be realised

as a manifold in R2k−1. We refer the interested reader to [4], [2] for the details of

proof.
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Abstract. We propose a generalized Konhauser matrix polynomial and ob-

tain its properties such as the differential equation, inverse series relation and

certain generating function relations involving Mittag-Leffler matrix function.

1. Introduction and Notations

Many of the Special Functions and most of their properties can be derived

from the theory of Group representations [12]. Their matrix analogues often occur

in Statistics, Number theory and in Lie Group theory [1, 5, 11]. In [6, 7, 10],

are studied matrix differential equations and Frobenius method for the Laguerre,

Hermite and Gegenbauer matrix polynomials. Interestingly in [10] is studied the

quadrature matrix integration process with the help of matrix Laguerre polyno-

mial. It is well known that the Konhauser polynomial

Zαm(x; r) =
Γ(rm+ α+ 1)

Γ(m+ 1)

m∑
n=0

(−1)n
(
m

n

)
xrn

Γ(rn+ α+ 1)
, (<(α) > −1)

is the biorthogonal polynomial for the distribution function of the Laguerre polyno-

mial [14]. This can also be viewed as a generalization of the Laguerre polynomial.

In 2014, the above Konhauser polynomial Zαm(x; r) was further generalized by

Prajapati, Ajudia and Agarwal in the form [13, Eq.(5), p.640]:

L
(α,β)
[ mq ] (z) =

Γ(αm+ β + 1)

m!

[ mq ]∑
n=0

(−m)qn
Γ(αn+ β + 1)

zn

n!
, (1.1)

where α, β ∈ C,m, q ∈ N,<(β) > −1 and [mq ] denotes the integral part of mq . Here,

we define a matrix analogue of this polynomial and derive certain properties of it.

In what follows, the following definitions and notations will be used. Throughout,

we shall let A to be a matrix in Cp×p and σ(A) to be the set of all eigenvalues of

A. The matrix A is said to be positive stable matrix if <(λ) > 0 for all λ ∈ σ(A).

If A0, A1, A2, ....An are elements of Cp×p and An 6= 0 then

Pn(x) = Anx
n +An−1x

n−1 +An−2x
n−2 + ...+A1x+A0

is a matrix polynomial of degree n in x.

2010 Mathematics Subject Classification: 11C08, 15A16, 15A24, 33C99, 33E12.

Key words and phrases: Generalized Konhauser matrix polynomial, differential equation,

inverse series relation, Mittag-Leffler matrix function, generating function.
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The 2-norm of the matrix A, denoted by ‖A‖, is defined by

‖ A ‖= sup
x6=0

‖ Ax ‖2
‖ x ‖2

= max{
√
λ : λ ∈ σ(A∗A)},

where for a vector x ∈ Cp, ‖x‖2 =
(
xTx

)1/2
is Euclidean norm of x, and A∗

denotes the transposed conjugate of A.

If f(z) and g(z) are holomorphic functions of a complex variable z which are

defined on an open set Ω of the complex plane and if σ(A) ⊂ Ω, then from the

properties of the matrix functional calculus [3] it follows that

f(A)g(A) = g(A)f(A).

The reciprocal gamma function denoted by Γ−1(z) = [Γ(z)]
−1

= 1
Γ(z) is an entire

function of complex variable z [4, p. 253] and thus for any matrix A in Cn×n, the

functional calculus [3] shows that Γ−1(A) is a well defined matrix function. If I

denotes identity matrix of order p and A+ nI is invertible for every integer n ≥ 0

then [8, Eq. (6) and (7), p.206]

(A)n = Γ(A+ nI)Γ−1(A).

For positive stable matrices C,D ∈ Cp×p, the Beta matrix function is denoted and

defined by [8, Eq.(9), p.207] (also [9])

B(C,D) =

1∫
0

tC−I(1− t)D−Idt. (1.2)

Further, if CD = DC and if C +nI, D+nI and C +D+nI are invertible for all

nonnegative integers n then [8, Theorem 2, p. 209]

B(C,D) = Γ(C)Γ(D)Γ−1(C +D). (1.3)

For A(k, n), B(k, n) ∈ Cp×p, n, k ≥ 0 and m ∈ N, there holds the double series

identities (cf. [16, Eq.(1.7), p.606])
∞∑
n=0

[n/m]∑
k=0

B(k, n) =

∞∑
n=0

∞∑
k=0

B(k, n+mk) (1.4)

and (cf. [2, Eq.(8), p.324])

mn∑
i=0

[i/m]∑
j=0

B(i, j) =
n∑
j=0

mn−mj∑
i=0

B(i+mj, j). (1.5)

For any matrix A in Cp×p and for |x| < 1, the following series expansion holds [8].

(1− x)−A =

∞∑
n=0

(A)n
n!

xn.

Also, we have the formula [16, Eq.(2.23), p.616]

(A)mk = mmk
m∏
i=1

(
A+ (i− 1)I

m

)
k

= ∆(m;A). (1.6)

In particular, for non negative integer n,

(−nI)mk = (−1)mk
n!

(n−mk)!
I = mmk

m∏
i=1

(
−n+ i− 1

m
I

)
k

. (1.7)
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We shall denote the zero matrix by O.

2. Generalized Konhauser matrix polynomial

We propose the extension of (1.1) as follows.

Definition 2.1. For the matrix A in Cp×p

Z
(A,λ)
m∗ (xk; r) =

Γ(A+ rmI + I)

m!

bm/sc∑
n=0

(−mI)snΓ−1(A+ rnI + I)
(λxk)n

n!
, (2.1)

where r, λ, µ ∈ C, k ∈ R>0, s ∈ N, m ∈ N ∪ {0}, <(λ) > 0, <(µ) > −1 for all

eigen values µ ∈ σ(A) and the floor function buc = floor u, represents the greatest

integer ≤ u.
It may be seen that when r = k ∈ N and s = 1, this polynomial reduces to

Z(A,λ)
m (x; k) = Γ(kmI +A+ I)

m∑
n=0

(−1)n(λx)nk

(m− n)!n!
Γ−1(knI +A+ I)

studied by Varma, Çekim, and Taşdelen [18]. Further, if k = 1 then this reduces

to the Laguerre matrix polynomial [6]:

L(A,λ)
m (x) =

m∑
n=0

(−1)n

n!(m− n)!
(A+ I)m [(A+ I)n]−1 (λx)n.

For the polynomial (2.1), we derive the differential equation and inverse series

relation. Also, we show the relation of (2.1) with Mittag-Leffler matrix function

which will be used in the generating function relations derived here. At last, the

Euler(Beta) matrix transform is applied on this polynomial.

3. Differential Equations
If {Ai; i = 1, 2, . . . , p} and {Bj ; j = 1, 2, . . . , q} are matrices in Cn×n and

Bj + nI are invertible for all n = 0, 1, 2, . . . , then it is known that the generalized

hypergeometric matrix function [16, Eq. (2.2), p. 608]:

pFq(A1, A2, . . . , Ap;B1, B2, . . . , Bq; z)

=
∞∑
k=0

(A1)k(A2)k · · · (Ap)k [(B1)k]−1[(B2)k]−1 · · · [(Bq)k]−1 z
k

k!
(3.1)

satisfies the matrix differential equation [16, Eq. (2.10), p. 610]:θ q∏
j=1

(θI +Bj − I)− z
p∏
i=1

(θI +Ai)


pFq(z) = O, (3.2)

where θ = zd/dz and O is the zero matrix of order n. Here, if we express the

polynomial (2.1) in pFq form then the equation (3.2) will readily yield the differ-

ential equation corresponding to the polynomial (2.1). In fact, assuming that the

matrices occurring here commute with one another, we have, for r, s ∈ N,

Z
(A,λ)
m∗ (xk; r) =

Γ(A+ rmI + I)

m!
Γ−1(A+ I)

bm/sc∑
n=0

(−mI)sn(A+ I)−1
rn (λxk)n

n!

=
Γ(A+ rmI + I)

m!
Γ−1(A+ I)

bm/sc∑
n=0

{
s∏
i=1

(
−m+ i− 1

s
I

)
n

}
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×


r∏
j=1

(
A+ jI

r

)−1

n

 1

n!

(
λxkss

rr

)n
.

Hence, in (3.1), setting p = s, q = r, Ai = (−m+ i−1)I/s, Bj = (A+ jI)/r, z =

λssxk/rr, the equation immediately leads us to the differential equation for (2.1)

of order max.{r + 1, s}. This is stated in

Theorem 3.1. If r, s ∈ N and the operator Θ is defined by Θf(x) =
x

k

d

dx
f(x)

then U = Z
(A,λ)
m∗ (xk; r) satisfies the equation[Θ

r∏
j=1

(
Θ I +

A+ jI

r
− I
)

−
(
ss

rr

)
λ xk

{
s∏
i=1

(
Θ I +

−m+ i− 1

s
I

)}]
U = O.

4. Inverse series relations

For deriving the inverse series of the matrix polynomial (2.1), the following

lemma will be used.

Lemma 4.1. If {Pn} and {Qn} are finite sequences of matrices in Cn×n, then

Qn =

n∑
j=0

(−nI)j
j!

Pj ⇔ Pn =

n∑
j=0

(−nI)j
j!

Qj .

Proof. Let us denote the right hand side of second series by Tn, then

Tn =
n∑
k=0

(−nI)k
k!

Qk =
n∑
k=0

(−1)kn!

k! (n− k)!
I

k∑
j=0

(−kI)j
j!

Pj

=
n∑
k=0

(−1)kn!

k! (n− k)!
I

k∑
j=0

(−1)j k!

j! (k − j)!
Pj

=
n∑
j=0

(
n

j

) n−j∑
k=0

(−1)k
(
n− j
k

)
Pj

= Pn +

n−1∑
j=0

(
n

j

) n−j∑
k=0

(−1)k
(
n− j
k

)
Pj .

Thus, Tn = Pn and hence, first series implies the second series. Here we have

used the simple fact that the inner sum vanishes being equal to (1 + a)n−jPj with

a = −1. The converse part is similar hence its proof is omitted. �

Using this lemma, we now establish the inverse series relation in the next

theorem.

Theorem 4.2. For a matrix A ∈ Cp×p, r, λ ∈ C, s ∈ N, m ∈ N ∪ {0},

Z
(A,λ)
m∗ (xk; r) =

Γ(A+ rmI + I)

m!

bm/sc∑
j=0

(−mI)sjΓ
−1(A+ rjI + I)

(λxk)j

j!
(4.1)

if and only if
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(λxk)m

m!
I =

Γ(A+ rmI + I)

(ms)!

ms∑
j=0

(−msI)jΓ
−1(A+ rjI + I)Z

(A,λ)
j∗ (xk; r), (4.2)

and for m 6= sl, l ∈ N,
m∑
j=0

(−mI)j Γ−1(A+ rjI + I) Z
(A,λ)
j∗ (xk; r) = O. (4.3)

Proof. We first show that the series (4.1) implies both (4.2) and (4.3). The proof

of (4.1) implies (4.2) runs as follows. Denoting the right hand side of (4.2) by

matrix Ξm, substituting the series expression for Z
(A,λ)
j∗ (xk; r) from (4.1) and then

using the double series relation (1.5), we get

Ξm =
Γ(A+ rmI + I)

(ms)!

ms∑
j=0

(−msI)jΓ
−1(A+ rjI + I) Z

(A,λ)
j∗ (xk; r)

=
Γ(A+ rmI + I)

(ms)!

ms∑
j=0

(−msI)j
j!

bj/sc∑
i=0

(−jI)si Γ−1(A+ riI + I)
(λxk)i

i!

=
ms∑
j=0

bj/sc∑
i=0

Γ(A+ rmI + I) (−1)j+si Γ−1(A+ riI + I)

(ms− j)! (j − si)! i!
(λxk)i

=
m∑
i=0

ms−si∑
j=0

Γ(A+ rmI + I) (−1)j Γ−1(A+ riI + I)

(ms− si− j)! j! i!
(λxk)i

=
(λxk)m

m!
I +

m−1∑
i=0

Γ(A+ rmI + I) Γ−1(A+ riI + I)

(ms− si)! i!
(λxk)i

×
ms−si∑
j=0

(−1)j
(
ms− si

j

)
.

Here the inner sum in the second term on the right hand side vanishes being equal

to (1 + a)ms−si with a = −1. Consequently, we arrive at Ξm = (λxk)m

m! I. Next,

to show further that (4.1) also implies (4.3), let us substitute the series expression

for Z
(A,λ)
j∗ (xk; r) from (4.1) to the left hand side of (4.3). Then in view of (1.5),

we get
m∑
j=0

(−mI)jΓ
−1(A+ rjI + I) Z

(A,λ)
j∗ (xk; r)

=

m∑
j=0

(−1)jm!

(m− j)!
I

bj/sc∑
i=0

(−1)si Γ−1(A+ riI + I)

(j − si)! i!
(λxk)i

=

bm/sc∑
i=0

m! Γ−1(A+ ri+ I)

(m− si)! i!
(λxk)i

m−si∑
j=0

(−1)j
(
m− si
j

)
= O

if m 6= sl, l ∈ N. This completes the proof of the first part. The proof of converse

part which uses the technique due to Dave and Dalbhide [2], runs as follows. In
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order to show that the series (4.2) and the condition (4.3) together imply the series

(4.1), we use Lemma 4.1 with

Pj = j! Γ−1(A+ rjI + I) Z
(A,λ)
j∗ (xk; r),

and consider one sided relation in the lemma, that is, the series on the left hand

side implies the series on the right hand side. Then

Qm =
m∑
j=0

(−mI)j Γ−1(A+ rjI + I) Z
(A,λ)
j∗ (xk; r) (4.4)

implies

Z
(A,λ)
m∗ (xk; r) =

Γ(A+ rmI + I)

m!

m∑
j=0

(−mI)j
j!

Qj . (4.5)

Since the condition (4.3) holds, Qm = O for m 6= sl, l ∈ N, whereas

Qms =
ms∑
j=0

(−msI)j Γ−1(A+ rjI + I) Z
(A,λ)
j∗ (xk; r).

Also the series (4.2) holds true, whence it follows that

Qms =
ms∑
j=0

(−msI)j Γ−1(A+ rjI + I) Z
(A,λ)
j∗ (xk; r)

=
(ms)! Γ−1(A+ rmI + I)

m!
(λxk)m.

Consequently, the inverse pair (4.4) and (4.5) assume the form:

(λxk)m

m!
I =

Γ(A+ rmI + I)

(ms)!

ms∑
j=0

(−msI)j Γ−1(A+ rjI + I)

×Z(A,λ)
j∗ (xk; r)

from which it follows that

Z
(A,λ)
m∗ (xk; r) =

Γ(A+ rmI + I)

m!

bm/sc∑
j=0

(−mI)sj
(sj)!

Qsj

=
Γ(A+ rmI + I)

m!

bm/sc∑
j=0

(−mI)sj Γ−1(A+ rjI + I)

j!
(λxk)j ,

subject to the condition (4.3). �

5. Mittag-Leffler Matrix Function

In 2007, Shukla and Prajapati [17] introduced a generalization of the Mittag-

Leffler function in the form:

Eγ,qα,β(z) =
∞∑
n=0

(γ)qn
Γ(αn+ β)

zn

n!
, (5.1)

where α, β, γ ∈ C, <(α, β, γ) > 0, q ∈ (0, 1)∪N. Here we allow q to take value 0 in

which case the series retains convergence behavior. Also, if α is allowed to assume

value 0 then with q = 0 and β = 1, the reducibility of (5.1) to the exponential

function ez occurs. Thus, with q ≥ 0, <(α) ≥ 0, <(β, γ) > 0 and z ∈ C, (5.1)

yields an instance
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Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β) n!
. (5.2)

We define here the matrix analogues of (5.1) and (5.2) as follows.

Definition 5.1. For A,B ∈ Cp×p, <(µ) > −1 for all eigen values µ ∈ σ(A), r ∈ C
and s ∈ N,

EB,sIrI,A+I(z) =
∞∑
n=0

(B)snΓ−1(A+ rnI + I)
zn

n!
. (5.3)

Definition 5.2. For A ∈ Cp×p, r ∈ C, <(µ) > −1 for all eigen values µ ∈ σ(A),

ErI,A+I(z) =
∞∑
n=0

Γ−1(A+ rnI + I)
zn

n!
. (5.4)

Putting B = −mI, where m ∈ N and z = λxk in (5.3), and comparing it with

the defined function (2.1), we obtain the relation:

E−mI,sIrI,A+I (λxk) = m! Γ−1(A+ rmI + I)Z
(A,λ)
m∗ (xk; r).

The functions (5.3) and (5.4) will be used in the generating function relations

derived in the following section.

6. Generating Function relations

We derive the generating function relations for the matrix polynomial Z
(A,λ)
m∗ (xk; r)

in the form of Theorems 6.1, 6.3 and 6.5.

Theorem 6.1. Let r ∈ C, s ∈ N and A,B be the matrices in Cp×p, <(µ) > −1

for all eigenvalues µ ∈ σ(A), then for |t| < 1,
∞∑
m=0

(B)m Γ−1(A+ rmI + I) Z
(A,λ)
m∗ (xk; r) tm

= (1− t)−B EB,sIrI,A+I

(
λxk(−t)s(1− t)−sI

)
.

Proof. Observe that on substituting the series for Z
(A,λ)
m∗ (xk; r) from (2.1) on the

left hand side and using (1.4), we get
∞∑
m=0

(B)m Γ−1(A+ rmI + I) Z
(A,λ)
m∗ (xk; r) tm

=
∞∑
m=0

(B)mΓ−1(A+rmI+I)
Γ(A+ rmI+I)

m!

bm/sc∑
n=0

m!(−1)snIΓ−1(A+ rnI+I)

n!(m− sn)!

×(λxk)ntm

=
∞∑
m=0

bm/sc∑
n=0

(−1)sn(B)mΓ−1(A+ rnI + I)

n! (m− sn)!
(λxk)ntm

=
∞∑
m=0

∞∑
n=0

(−1)sn(B)m+snΓ−1(A+ rnI + I)

n! m!
(λxk)ntm+sn

=
∞∑
m=0

∞∑
n=0

(B + snI)mt
m

m!

(−1)sn(B)snΓ−1(A+ rnI + I)

n!
(λxk)ntsn
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=
∞∑
n=0

(1− t)−B−snI (−1)sn(B)snΓ−1(A+ rnI + I)

n!
(λxk)ntsn

= (1− t)−B
∞∑
n=0

(B)snΓ−1(A+ rnI + I)

n!
(λxk(−t)s(1− t)−sI)n (6.1)

= (1− t)−B EB,sIrI,A+I

(
λxk(−t)s(1− t)−sI

)
.

This completes the proof. �

Corollary 6.2. If r ∈ N, then for s ≤ r or s = r + 1,
∞∑
m=0

(B)m (A+ I)−1
rm Z

(A,λ)
m∗ (xk; r) tm = (1− t)−B ×

sFr

(
B

s
,
B+I

s
, . . . ,

B+(s− 1)I

s
;
A+I

r
,
A+2I

r
, . . . ,

A+rI

r
;
ss

rr
λxkRs

)
,

where R = (−t)(1− t)−I .
Proof. For r ∈ N, the infinite series on the right hand side in (6.1) assumes the

form

(1− t)−BΓ−1(A+ I)

∞∑
n=0

(B)sn(A+ I)−1
rn

(λxkRs)n

n!
.

In view of the formula (1.6) and the matrix function (3.1), this leads us to the

corollary. �

If (B)m is dropped from the left hand side of this theorem, then it takes the

following form.

Theorem 6.3. In the usual notations and meaning, there holds the generating

function relation:
∞∑
m=0

Γ−1(A+ rmI + I) Z
(A,λ)
m∗ (xk; r) tm = et ErI,A+I

(
λxk(−t)s

)
.

Proof. The proof follows in a straight forward manner. In fact, by using the double

series relation (1.4), we have
∞∑
m=0

Γ−1(A+ rmI + I) Z
(A,λ)
m∗ (xk; r) tm

=
∞∑
m=0

bm/sc∑
n=0

(−1)snΓ−1(A+ rnI + I)

n! (m− sn)!
(λxk)ntm

=
∞∑
m=0

∞∑
n=0

(−1)snΓ−1(A+ rnI + I)

n! m!
(λxk)ntm+sn

=
∞∑
m=0

tm

m!

∞∑
n=0

(−1)snΓ−1(A+ rnI + I)

n!
(λxk)ntsn

= et ErI,A+I

(
λxk(−t)s

)
.

�
Again, we have the following corollary. (cf. [16, Eq. (3.5), p. 619])
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Corollary 6.4. For r ∈ N,
∞∑
m=0

(A+ I)−1
rm Z

(A,λ)
m∗ (xk; r) tm

= et 0Fr

(
−−;

A+ I

r
,
A+ 2I

r
, . . . ,

A+ rI

r
;
λxk(−t)s

rr

)
.

The proof follows by proceeding as in corollary 6.2. Next, in the notations and

meaning of Theorem 6.1, we have

Theorem 6.5. Let a and b be complex constants which are not zero simultane-

ously, then there holds the generating function relation

∞∑
n=0

Z
(A,λ)
n∗

(
xk

(a+ bn)s
; r

)
(a+ bn)n Γ−1(A+ rnI + I) tn

= eax (1− btebx)−1 ErI,A+I(λx
k(−t)sebsx).

Proof. Beginning with the left hand side, we have

∞∑
n=0

Z
(A,λ)
n∗

(
xk

(a+ bn)s
; r

)
(a+ bn)nΓ−1(A+ rnI + I) tn

=
∞∑
n=0

bn/sc∑
j=0

(−1)sj Γ−1(A+ rjI + I)(λxk)j

(n− sj)! j!
(a+ bn)n−sjtn

=

∞∑
n=0

∞∑
j=0

((−t)sλxk)jΓ−1(A+ rjI + I)

j!

(a+ bn+ bsj)n

n!
tn. (6.2)

We use here the Lagrange expansion formula [15, Eq. (18), p. 146]:

f(x)

1− tg′(x)
=
∞∑
n=0

tn

n!
[Dnf(x)(g(x))n]x=0 , (t = x/g(x))

by taking f(x) = e(a+bsj)x and g(x) = ebx. Then we find that

e(a+bsj)x

1− btebx
=
∞∑
n=0

(a+ bsj + bn)n
tn

n!
.

Thus (6.2) simplifies to
∞∑
n=0

Z
(A,λ)
n∗

(
xk

(a+ bn)s
; r

)
(a+ bn)nΓ−1(A+ rnI + I) tn

=
∞∑
j=0

Γ−1(A+ rjI + I)

j!
((−t)sλxk)j

e(a+bsj)x

1− btebx
.

In view of (5.4), this yields the desired form. �

We again have the following corollary. (cf. [16, Eq. (3.14), p. 621])
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Corollary 6.6. For r ∈ N, there holds the matrix generating function relation:
∞∑
n=0

Z
(A,λ)
n∗

(
xk

(a+ bn)s
; r

)
(a+ bn)n (A+ I)−1

rn tn = eax (1− btebx)−1

× 0Fr

(
−−;

A+ I

r
,
A+ 2I

r
, . . . ,

A+ rI

r
;
λxk(−t)sebsx

rr

)
.

7. Matrix Integral transform

Using the integral formula (7.1), we define Euler (Beta) matrix transform as

follows.

Definition 7.1. For the matrices P,Q ∈ Cp×p, a Beta matrix transform may be

defined as

B {f(x) : P,Q} =

1∫
0

xP−I(1− x)Q−If(x) dx. (7.1)

We apply this transform to the polynomial (2.1) in the following theorem.

Theorem 7.2. If A,P,Q ∈ Cp×p, P,Q are positive stable matrices, for q =

0, 1, 2, . . . , the matrices P + qI, Q are commutative, P + qI,Q+ qI, P +Q+ qI

are invertible and k, r, s,m ∈ N, then

B
{
Z

(A,λ)
m∗ (txk; r) : P,Q

}
=

(A+ I)rm
m!

Γ(Q)Γ−1(P )Γ−1(P +Q)

× s+kFr+k

[
∆(s;−mI), ∆(k;P );

ss

rr
t

∆(r;A+ I), ∆(k;P +Q);

]
,

where the notation ∆(j;C) carries the meaning as in (1.6).

Proof. From (7.1),

B
{
Z

(A,λ)
m∗ (txk; r) : P,Q

}
=

1∫
0

xP−I(1− x)Q−IZ
(A,λ)
m∗ (txk; r)dx

=

1∫
0

xP−I(1− x)Q−I
Γ(rmI+A+I)

m!

bm/sc∑
n=0

(−m)sn
n!

Γ−1(rnI +A+I)(txk)ndx

=
Γ(rmI+A+ I)

m!

bm/sc∑
n=0

(−m)sn
n!

Γ−1(rnI+A+I)tn
1∫

0

xknI+P−I(1− x)Q−Idx

=
Γ(rmI+A+I)

m!

bm/sc∑
n=0

(−m)sn
n!

Γ−1(rnI +A+ I) tn B(knI + P,Q)

=
Γ(rmI +A+ I)

m!

bm/sc∑
n=0

(−m)sn
n!

Γ−1(rnI +A+ I) tn Γ(knI + P ) Γ(Q)
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×Γ−1(knI + P +Q)

=
(A+I)rm

m!

bm/sc∑
n=0

(−m)sn(A+I)−1
rn (P )kn(P+Q)−1

knΓ(Q)Γ(P )Γ−1(P+Q)
tn

n!

=
(A+ I)rm Γ(P )Γ(Q)Γ−1(P +Q)

m!

× s+kFr+k

[
∆(s;−mI), ∆(k;P );

ss

rr
t

∆(r;A+ I), ∆(k;P +Q);

]
.

�

This theorem reduces to the Euler (Beta) transform given in [13, Theorem 9.4, p.

649] when the P,Q,A are scalars.
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Abstract. This note contains some asymptotic formulas for the sums of

various residue classes of Euler’s φ-function.

1. Introduction

The φ-function was introduced by Euler in connection with his generalization

of Fermat’s Theorem. It occurs without the functional notation in his 1759 paper

Theoremata arithmetica nova methodo demonstrata [6]. In §3 of his 1775 paper

[7], Euler denotes by πD “the multitude of numbers less than D, and which have

no common divisor with it” and then provides a table of πD for D = 1 to 100

writing π1 = 0. Gauss introduced the symbol φ in §38 of his Disquitiones Arith-

meticae(1801) with φ(1) = 1. The function φ(n) denotes the number of positive

integers not exceeding n which are relatively prime to n. Clearly, for p prime, we

have φ(p) = p− 1.

As Euler observed (Theorem 3, pp.81–82), if p is a prime, the positive in-

tegers ≤ pk that are not relatively prime to pk are the pk−1 multiples of p :

p, 2p, 3p, . . . , pk−1 · p. So φ(pk) = pk − pk−1 = pk(1 − 1
p ) = pk−1(p − 1), and∑k

j=0 φ(pj) = (p− 1)[1 + p+ p2 + · · ·+ pk−1] = pk. Furthermore, if (a, b) = 1, then

φ(a b) = φ(a)φ(b). Thus if m has the prime factorization m = pr11 p
r2
2 · · · p

rk
k , then

φ(m) = pr1−11 pr2−12 · · · prk−1k (p1−1)(p2−1) · · · (pk−1). And, φ(mk) = mk−1φ(m).

Also, if (a, b) = d, then φ(a b) = φ(a)φ(b)(d/φ(d)). As Gauss showed:∑
d|n

φ(d) =
∑

φ(n/d) = n.

The value of φ(n) fluctuates as n varies. Since averages sooth out fluctuations, it

may be fruitful to study the arithmetic mean (Φ(n)/n), where Φ(n) =
∑n
m=1 φ(m).

In 1874, Mertens obtained [3, p.122][11] an asymptotic value for Φ(N) for

large N. He employed the function µ(n) and proved that
G∑

m=1

φ(m) =
1

2

G∑
n=1

µ(n)

{[
G

n

]2
+

[
G

n

]}
=

3

π2
G2 + ∆

2010 Mathematics Subject Classification: 11A25, 11K65, 11N37, 11N56, 11N69, 11Y60,

11Y70.

Key words and phrases: Euler’s φ-function; Residue classes; Sum of prime numbers; Asy-

mptotic summation of φ(kn).
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with |∆| < G( 1
2 lnG + 1

2γ + 5
8 ) + 1, where γ is Euler’s constant and µ(n) is the

Möbius function defined by

µ(n) =


1 ifn = 1,

(−1)r if n is product of r distinct prime numbers,

0 if n has one or more repeated prime factors.

If (a, b) = 1, µ(a b) = µ(a)µ(b). Further,
∑
d|n µ(d) = 0 (n > 1).

For any positive integer n, we have[1, pp.78–80]:

φ(n) =
∑

d|n

n

d
µ(d) =

∑
d|n

dµ
(n
d

)
.

It is shown in [8, p.268 Theorem 330][2, pp.61-62] that

Φ(n) = (3n2/π2) +O(n lnn). (1.1)

To prove (1.1), we may recall here Euler’s zeta function and identity:

ζ(s) =
∑∞

n=1

1

ns
=

∏
p−prime

(
1− 1

ps

)−1
, <(s) > 1.

Since for s > 1,
1

ζ(s)
=
∏
p

(
1− p−s

)
=
∏
{1 + µ(p)p−s + µ(p2)p−2s + . . .} =

∞∑
n=1

µ(n)

ns
and

φ(n) = n
∑

d|n
(µ(d)/d), hence we have

Φ(n) =
n∑

m=1

φ(m) =
n∑

m=1

m
∑
d|m

µ(d)

d
=
∑
dd′≤n

d′µ(d) =
n∑
d=1

µ(d)

bnd c∑
d′=1

d′.

That is,

Φ(n) =
∑n

d=1
µ(d)

{
1

2

⌊n
d

⌋(⌊n
d

⌋
+ 1
)}

=
1

2

∑n

d=1
µ(d)

{
n2

d2
+O

(n
d

)}
,

leading to

Φ(n) =
n2

2

n∑
d=1

µ(d)

d2
+O

(
n

n∑
d=1

1

d

)
= n2

∞∑
d=1

µ(d)

d2
− n2

∞∑
d=n+1

µ(d)

d2
+O(n lnn).

=
n2

2ζ(2)
+O

(
n2

∞∑
d=n+1

1

d2

)
+O(n lnn).

Or,

Φ(n) = (n2/2ζ(2))+O(n)+O(n lnn) = (3n2/π2)+O(n lnn). �

Lehmer studied sums of φ(n) in [9] and revisited in [10]. I seek here an extension

of Lehmer’s formula occurring in [10] by using his argument.

2. Asymptotic summation of φ(pn)

Since φ(2k) = 2k−1, one has φ(4m + 2) = φ(2m + 1); φ(4m) = 2φ(2m).

Denoting Φe(n) =
∑

m≤n;meven
φ(m), Φo(n) =

∑
m≤n;modd

φ(m) and, using

the relation

Φe(n) = Φo(n/2) + 2Φe(n/2) = Φ(n/2) + Φe(n/2),
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Lehmer [10] deduced: Φe(n) =
∑`
λ=1 Φe(n/2) (` = [lnn/ ln 2]) and then used

the formula (1.1) to derive

Φe(n) = (n/π)2 +O(n lnn); Φo(n) = 2(n/π)2 +O(n lnn). (2.1)

Let Φri(n) =
∑m
k=1 φ(kp − i), with fixed i = 0, 1, 2, . . . , p − 1 and (mp − i) ≤ n.

Then

Φr0(n) = (p− 1)
∑p−1

i=1
Φri(n/p) + pΦr0(n/p) which gives

Φr0(n) = (p− 1) Φ(n/p) + Φr0(n/p).

Mimicking Lehmer’s proof, we see that for any prime p

Φr0(n) = (p− 1) 3π−2 n2
∑q

λ=1
p−2λ +O(n log n) (q = [lnn/ ln p])

=
3(p− 1)

p2 − 1
π−2 n2 +O

(
n2
∫ ∞
q

(p−2)t dt

)
+O(n log n)

=
3

p+ 1
π−2 n2 +O(n log n). �

The last asymptotic formula implies the following theorem:

Theorem 1. For any prime p, we have:

lim
m→∞

(∑m

k=1
φ(pk)/(pm)2

)
= (3/(p+ 1)π2). (2.2)

If the set N is partitioned into p residue classes modulo p, we will have one class

consisting of composite numbers of the form pm while the remaining p− 1 classes

contain nearly an equal number of prime numbers, and the ratio of the cumulative

sums of the two types of classes will be p : (p− 1). The rationale behind the first

part of the statement is found in Dirichlet’s famous theorem relating to primes in

arithmetic progressions: every arithmetic progression, with the first member and

the difference being coprime, will contain infinitely many primes. In other words,

if k > 1 is an integer and (k, `) = 1, then there are infinitely many primes of the

form kn + `, where n runs over the positive integers. If k is a prime p, then ` is

one of the numbers 1, 2, . . . , p− 1.

Let us recall here the arithmetic function known as the Mangoldt function

which is defined as:

Λ(n) =

ln p, if n = pm for some prime p and positive integer m,

0 otherwise.

This function has an important role in elementary proofs of the prime num-

ber theorem which states that if π(n) denotes the number of primes ≤ n, then

π(n) ∼ (n/ lnn). We have ([8, pp.253-254]) for n ≥ 1 :

Λ(n) =
∑
d|n

µ
(n
d

)
ln d =

∑
d|n

µ(d) ln
(n
d

)
= −

∑
d|n

µ(d) ln d, and
∑
d|n

Λ(d) = lnn.

Further [8, p.348][2, p.89],
∑
n≤x(Λ(n)/n) = lnx+O(1), whence∑

p≤x
(ln p/p) = lnx+O(1). (2.3)

This related result is well-known[2, p.148]:



Member's copy - not for circulation 

124 AMRIK SINGH NIMBRAN∑
p≤x; p≡` (mod k)

(ln p/p) = (1/φ(k)) lnx+O(1), (2.4)

where the sum is extended over those primes p ≤ x which are congruent to

` (mod k). Since lnx→∞ as x→∞ this relation implies that there are infinitely

many primes p ≡ `(mod k), hence infinitely many in the progression kn+ `. Since

the principal term on the right hand side in (2.4) is independent of `, therefore it

not only implies Dirichlet’s theorem but it also shows [2, p. 148] that the primes

in each of the φ(k) reduced residue classes (mod k) make the same contribution

to the principal term in (2.3), that is, the primes are equally distributed among

φ(k) reduced residue classes (mod k). We thus have a prime number theorem for

arithmetic progressions [2, p. 154]: If π`(x) counts the number of primes ≤ x in

the progression kn+ `, then

π`(x) ∼ (π(x)/φ(k)) ∼ (1/φ(k))(x/ lnx).

Hence, as m → ∞, Φri(m) ∼ Φrj (m), i, j 6= 0. And therefore, we deduce from

(1.1) and our Theorem 1 the following result:

Theorem 2. For any prime p, we have for each i = 1, 2, 3, . . . , p− 1,

lim
m→∞

(∑m

k=1
φ(pk − i)/(pm)2

)
= (3p/(p2 − 1)π2). (2.5)

We will now obtain asymptotic evaluation of the sums of residue classes modulo

p for the φ-function.

Since φ(4m − 2) = φ(2m − 1); φ(4m) = 2φ(2m) and as n → ∞,Φ(2n − 1)

=
∑n
m=1 φ(2m− 1) = 2Φ(2n) = 2

∑n
m=1 φ(2m), hence we have

lim
n→∞

(Φ(4n− 2)/(4n)2) = lim
n→∞

(Φ(4n)/(4n)2) = (1/2π2).

Further, as n→∞; Φ(2n−1) = Φ(4n−3) + Φ(4n−1) = 2 Φ(2n) = 2 Φ(4n−2) +

2 Φ(4n) and the two forms 4k − 3, 4k − 1 yield almost equal number of primes,

therefore we have:

lim
n→∞

Φ(4n− 3)

(4n)2
= lim
n→∞

Φ(4n− 1)

(4n)2
=

1

π2
; again

lim
n→∞

Φ(6n− 4

(6n)2
+ lim
n→∞

Φ(6n− 2)

(6n)2
+ lim
n→∞

Φ(6n)

(6n)2
=

1

π2
and

lim
n→∞

Φ(6n− 5)

(6n)2
+ lim
n→∞

Φ(6n− 3)

(6n)2
+ lim
n→∞

Φ(6n− 1)

(6n)2
=

2

π2
; further

lim
n→∞

Φ(6n− 4)

(6n)2
= lim
n→∞

Φ(6n− 2)

(6n)2
=

3

2
lim
n→∞

Φ(6n)

(6n)2
and

lim
n→∞

Φ(6n− 5)

(6n)2
= lim
n→∞

Φ(6n− 1)

(6n)2
=

3

2
lim
n→∞

Φ(6n− 3)

(6n)2
; and still further

lim
n→∞

(Φ(3(2n− 1))/(6n)2) = 2 lim
n→∞

(Φ(3(2n))/(6n)2).

This helps deduce the following results:
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lim
n→∞

Φ(6n− 4)

(6n)2
= lim
n→∞

Φ(6n− 2)

(6n)2
=

3

8π2
,

lim
n→∞

Φ(6n− 3)

(6n)2
=

1

2π2
; lim

n→∞

Φ(6n)

(6n)2
=

1

4π2
,

lim
n→∞

Φ(6n− 5)

(6n)2
= lim
n→∞

Φ(6n− 1)

(6n)2
=

3

4π2
.

In fact, we have the following general theorem based on two facts: (i) the sum of

all odd residue classes equals twice the sum of all even classes, and (ii) the ratio

of residue classes modulo p containing primes to the class having only composite

numbers is p
(p−1) : 1.

Theorem 3. For an odd prime p,

lim
n→∞

Φ(2pn− (2p− 2))

(2pn)2
= lim
n→∞

Φ(2pn− 2)

(2pn)2
= lim
n→∞

Φ(2pn− (2p− 4))

(2pn)2
=

lim
n→∞

Φ(2pn− 4)

(2pn)2
= · · ·

lim
n→∞

Φ(2pn− (p+ 1))

(2pn)2
= lim
n→∞

Φ(2pn− (p− 1))

(2pn)2
=

p

(p2 − 1)π2
;

lim
n→∞

Φ(2pn)

(2pn)2
=

1

(p+ 1)π2
; and

lim
n→∞

Φ(2pn− (2p− 1))

(2pn)2
= lim
n→∞

Φ(2pn− 1)

(2pn)2
=

lim
n→∞

Φ(2pn− (2p− 3))

(2pn)2
= lim
n→∞

Φ(2pn− 3)

(2pn)2
= · · ·

lim
n→∞

Φ(2pn− (p+ 2))

(2pn)2
= lim
n→∞

Φ(2pn− (p− 2))

(2pn)2
=

2p

(p2 − 1)π2
;

lim
n→∞

Φ(2pn− p)
(2pn)2

=
2

(p+ 1)π2
.

Remark. If m < p, then m cannot divide p. Also, p cannot divide 2m and

2m − 1 simultaneously; it may not divide either. So gcd (p, 2m) = 1 or p and

gcd (p, 2m − 1) = p or 1. Hence, φ(p (2m)) = (p − 1)φ(2m) or p φ(2m); and

φ(p(2m−1)) = p φ(2m−1) or (p−1)φ(2m−1) depending on m. Lehmer proved that

lim
n→∞

(Φ(2n−1)/Φ(2n)) = 2. Hence, lim
n→∞

(
n∑

m=1

φ(p (2m− 1))/
n∑

m=1

φ(p (2m)

)
= 2.
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Abstract. In this short note, we solve a generalized problem related to prime

numbers using techniques of linear algebra and elementary number theory.

We discuss further generalizations of the same problem.

1. Introduction

The problem “Find a positive integer n such that n/2 is a square, n/3 is a cube

and n/5 is a fifth power”, the (smallest) solution for which is 215 ·310 ·56, is stated

on the page 29 in [3]. This leads to the following generalized problem:

Can one find a positive integer n such that n/2 is a square, n/3 is a cube, n/5 is

a fifth power, n/7 is a seventh power ... n/pk is a pk-th power ?

Here we give solution of this problem by two different methods.

2. Solution

2.1. Method I. In this method, we use only the concepts of basic number theory.

One can look in [1] for general references.

To begin with, let us note that the smallest such positive integer n should be of

the form:
n = 2n1 · 3n2 · 5n3 · · · pnk

k , (2.1)

where each ni should satisfy the following two conditions:

(1) Each ni should be divisible by pj for j = 1, · · · , k and j 6= i.

(2) Each ni should satisfy the congruence relation ni ≡ 1(mod pi).

Condition (1) would imply that each ni can be written as miri, where

mi =
k∏

j=1 j 6=i

pj .

As mi should be the lcm (pj), where j = 1, · · · , k ; j 6= i and gcd (pj) = 1,

therefore condition (2) can be written as

miri ≡ 1 (mod pi). (2.2)

If we let mi ≡ li(mod pi) then (2.2) reduces to

liri ≡ 1 (mod pi).

Further, (mi, pi) = 1 implies (li, pi) = 1.

We know that ax ≡ b(mod m) has a solution if (a,m) = 1, therefore we get

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11A07, 15A06.
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ri ≡ l(φ(pi)−1)i (mod pi) (using Euler–Fermat Theorem)

≡ l(pi−2)i (mod pi).

Now, we put the value of ri in equation (2.2) and then substitute the value of each

ni in equation (2.1) to get the value of n.

Before we move to the second method, let us make two useful observations.

Remark 1. The calculation process of ri can be reduced if we find the exponent

of li < (φ(pi)− 1).

2. The value of n is not unique. Another n can be found by increasing each ni by∏k
j=1 pj .

2.2. Method II. In this method, we use the concepts of linear algebra and we

refer [2] for general references. Let the solution of the problem be n. Therefore n

can be written as

n = 2 · 22n1,1 · 32n1,2 · 52n1,3 · · · p2n1,k

k

n = 3 · 23n2,1 · 33n2,2 · 53n2,3 · · · p3n2,k

k

n = 5 · 25n3,1 · 35n3,2 · 55n3,3 · · · p5n3,k

k

...

n = pk · 2pknk,1 · 3pknk,2 · 5pknk,3 · · · ppknk,k

k .

On comparing the exponent of 2, 3, 5, · · · , pk, we get

2n1,1 + 1 = 3n2,1 = 5n3,1 = · · · = pknk,1

2n1,2 = 3n2,2 + 1 = 5n3,2 = · · · = pknk,2

2n1,3 = 3n2,3 = 5n3,3 + 1 = · · · = pknk,3

...

2n1,k = 3n2,k = 5n3,k = · · · = pknk,k + 1,

which is same as the k sets of equations, where each set has k − 1 equations in k

unknowns.

2n1,1 + 1 = 3n2,1, 2n1,1 + 1 = 5n3,1, · · · 2n1,1 + 1 = pknk,1, i.e.,

− 2n1,1 + 3n2,1 = 1, −2n1,1 + 5n3,1 = 1, · · · − 2n1,1 + pknk,1 = 1.

Now, we can write these equations in matrix form AX = B, where

A =



−2 3 0 0 0 · · · 0

−2 0 5 0 0 · · · 0

−2 0 0 7 0 · · · 0

−2 0 0 0 11 · · · 0
...

...
...

...
...

. . .
...

−2 0 0 0 0 · · · pk


, X =


n1,1

n2,1
...

nk,1

 , B =


1

1
...

1

 .
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The row reduced echelon form of the augmented matrix A|B is as follows:

A|B =



1 0 0 0 0 · · · 0 −pk/2 −1/2

0 1 0 0 0 · · · 0 −pk/3 0

0 0 1 0 0 · · · 0 −pk/5 0

0 0 0 1 0 · · · 0 −pk/7 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 1 −pk/pk−1 0


which gives the equations

2n1,1 − pknk,1 = −1, 3n2,1 − pknk,1 = 0, · · · pk−2nk−2,1 − pknk,1 = 0,

pk−1nk−1,1 − pknk,1 = 0.

Now, we will solve this system of equations by back substitution method. The last

equation implies pk−1nk−1,1 = pknk,1 that is nk,1 should be a multiple of pk−1 and

nk−1,1 should be a multiple of pk.

Similarly, the second last equation implies pk−2nk−2,1 = pknk,1 that is nk,1 should

be a multiple of pk−2 and nk−2,1 should be a multiple of pk.

Continuing in this manner, second equation implies 3n2,1 = pknk,1 that is nk,1

should be a multiple of 3 and n2,1 should be a multiple of pk.

Therefore, nk,1 is a multiple of 3, 5, 7, · · · , pk−1. The smallest possible such

value of nk,1 is 3 · 5 · 7 · · · pk−1. After getting the value of nk,1, we use above

equations to find the value of n1,1, n2,1, n3,1, · · · , nk−1,1.

Similar procedure is used to find the exponents of 3, 5, 7, · · · , pk. After calcu-

lating all the k2 exponents ni,j where 1 ≤ i, j ≤ k, we get the value of n.

Note 1. It is not necessary that we should take only prime numbers for the problem

statement. If we take any set of k distinct natural numbers a1, a2, a3, ..., ak such

that (ai, aj) = 1, where 1 ≤ i, j ≤ k, i 6= j, then similar problem can be solved.

3. Extension of the problem

Further natural question would be:

Is it necessary that all the k natural numbers should be mutually coprime?

Suppose we have the set of k natural numbers a1, a2, a3, ..., ak. We will consider

two cases.

Case 1: We assume that there exists at least one prime p which is not a factor of

each number a1, a2 · · · ak. Let ai and aj be two numbers which are not coprime.

Suppose ai and aj has prime factorization

ai = px1
1 · p

x2
2 · p

x3
3 · · · p

xl

l , aj = qy11 · q
y2
2 · q

y3
3 · · · qymm .

We assume that there exists a prime p which is not common in both ai and aj .

Without loss of generality, we can assume that p is a factor of ai but not of aj .

Suppose the solution exists and its value is N and the exponent of p in N be

np. We will apply above mentioned conditions on np.
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From condition (1) and (2) we conclude that np ≡ 1(mod ai) and np ≡ 0(mod aj).

Further, let there exist a common prime p′ in ai and aj . Therefore, the above

congruence relations lead to np ≡ 1(mod p′) and np ≡ 0(mod p′), which is a

contradiction.

Thus, we conclude that all the k numbers should be mutually coprime.

Case 2: We will give an example to show that similar problem can be solved if

(ai, aj) 6= 1, where 1 ≤ i, j ≤ k, i 6= j. Let ai and aj be of the form

ai = px1
1 · p

x2
2 · p

x3
3 · · · p

xl

l and aj = py11 · p
y2
2 · p

y3
3 · · · p

yl
l ,

where xk 6= yk at least for one k between 1, 2, · · · , l. In particular, consider

a1 = 2 · 3, a2 = 2 · 37. The solution is n = 22(3
7)+1 · 32(37)+7.

We can thus conclude that the condition of all k natural numbers a1, a2, a3, ..., ak

being mutually coprime is not necessary.

Remark 2. We have discussed two methods of finding the solution of the problem.

One can compare both the algorithms and find out which algorithm is better.
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REALS IN THE UNIT INTERVAL

AS AVERAGE OF TWO REALS
IN THE CANTOR’S MIDDLE THIRD SET

ARITRO PATHAK
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Abstract. Using the ternary representation of real numbers between 0 and

1, a proof of (a slight generalization of) the fact “for any real y ∈ [0, 1] there

exist not necessarily distinct numbers c1 and c2 in the Cantor middle third

set such that y = (c1 + c2)/2” is outlined in Paul Halmos’s book [2]. In

this note another proof is provided which does not ostensibly use the ternary

representation of the Cantor middle third set.

1. Introduction

Given a particular real number x ∈ [0, 1], there are reals a, b (b ≥ a) belonging

to the Cantor middle-third set so that b − a = x (see [1] [3]). From this it is

easy to conclude, as illustrated in [1], that for any real y ∈ [0, 1] there exist not

necessarily distinct numbers c1 and c2 in the Cantor middle third set such that

y = (c1 + c2)/2.

A novel geometric proof of a slight generalisation of this result is found in

[4]. Using the ternary representation of real numbers between 0 and 1, the now

well known proof is outlined in Paul Halmos’s book [2]. This relies on using the

bijection between the elements of the Cantor middle third set and the set of infinite

ternary decimal sequences with digits 0 and 2. Here another proof is provided,

which does not ostensibly use the ternary representation of the Cantor middle

third set.
2. The Theorem

Theorem 2.1. Every real y ∈ [0, 1] is the average of two not necessarily distinct

real numbers each belonging to the Cantor middle third set C.

Proof. Take an arbitrary real number y ∈ [0, 1]. In the process of constructing the

Cantor set from [0, 1] by deleting the middle thirds, after a finite number (k0, say)

of steps, y would fall in the interior of, or on the boundary of, an open set that is

* If y falls in the interior of some cut out middle third set, it corresponds to the first time we

have a 1 in the ternary expansion of y
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cut out for the first time. The length of the interval cut out at this kth0 iteration

is (1/3k0)∗. Now, perform following two steps.

Step (i). Let the closest end point to y at this stage on the right be a1 ∈ [0, 1]

at a distance r1 = |a1 − y|, and that on the left be b1 ∈ [0, 1] at a distance

l1 = |b1 − y| (we have a1, b1 ∈ C). Consider the unique k1 > 0 so that 1/3k1+1 <

|l1 − r1| ≤ 1/3k1 . We have k1 ≥ k0. We may assume without loss of generality

that r1 ≥ l1. 1

Step (ii). To the left of b1, we further iterate and remove successive middle

thirds so that eventually there is a point b2 ∈ C to the left of b1 with l2 − l1 =

2/3k1+1, where l2 = |b2 − y| . At this stage, take a2 = a1, and r2 = r1.

We have: 1/3k1+1 − 2/3k1+1 = −1/3k1+1 < r2 − l2 = (r2 − l1) − (l2 − l1) ≤
(1/3k1−2/3k1+1) = 1/3k1+1, and so |r2−l2| ≤ 1/3k1+1. Thus we can find a unique

k2 > k1 such that 1/3k2+1 < |r2 − l2| ≤ 1/3k2 .

Now we perform steps exactly analogous to the steps (i) and (ii) above. It

may happen that at the k’th stage, we have lk > rk. In this case, corresponding to

(ii), we would find a point ak+1 to the right of ak, while keeping bk+1 = bk. The

sequence sk = |rk − lk| in the k’th iterative step is bounded by a higher power of

1/3, and so sk → 0 as k →∞.

Here {a}∞i=1 (resp. {b}∞i=1) is bounded within [0,1], is non-decreasing (resp.

non-increasing) and thus converges to a limit point a∞ (resp. b∞) that also belongs

to the Cantor set itself - Cantor set being closed. In the limit, we thus have within

the Cantor set, two points that are equidistant from y (with r∞ = |a∞ − y| =

|b∞ − y| = l∞), and this proves our assertion. �

For an example, consider at random, y = 2
5 . In this case, we have a1 = 2

3 , b1 =
1
3 , and r1 = 4

15 , l1 = 1
15 . Following our algorithm, we get l2 = l1 + 2

32 = 13
45 , and

r2 = r1 = 12
45 . In this case, we have a2 = 2

3 , b2 = 1
9 . Further on, we would find that

b3 = 1
9 , a3 = 56

81 , a4 = 56
81 , b4 = 79

729 , and a5 = 4538
6561 , b5 = 79

729 . The sequences ak, bk

can be continued with a code, and the limit behavior of either sequence studied.
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Abstract. Using elementary means, we solve a problem which is a variant

of a result proved in [1].

The following result is recently proved by Gupta and Chakraborty [1]:

If pk denotes the k-th prime for any positive integer k, then there exist

infinitely many positive integers n such that n
2 is a square, n

3 is a cube, ... ,
n
pk

is a pk-th power.

Note that in the above result the division by primes is considered. This

naturally intrigues one to inquire what happens if instead of division, multipli-

cation by primes is considered. In this short note, we consider this question and

we prove the following result.

Theorem. Let k be a positive integer and let p1, p2, . . . , pk be k distinct prime

numbers. Then there exist infinitely many positive integers n such that np1 is a

p1-th power, np2 is a p2-th power, . . ., npk is a pk-th power.

Observe that the Theorem is obvious when k = 1 as one can take n = pa1 for

any integer a such that a + 1 is divisible by p1.

Proof. Let p1, p2, . . . , pk be the given distinct prime numbers and put

S = {n ∈ N : n = pa1
1 pa2

2 . . . pak

k with ai ∈ N} and

T = {n ∈ S : npi = mpi

i for some integer mi and for all i = 1, 2, . . . , k} .
The theorem will be proved if we show that T is an infinite subset of S.

Note that n ∈ S can be written as n = pa1
1 pa2

2 · · · p
ak

k and it will be in T if ai’s

are so chosen that the following condition is satisfied:

For any j ∈ {1, 2, . . . , k},
pj | ai for all i ∈ {1, 2, . . . , k}\{j} and pj | (aj + 1). (0.1)

For this, let

si =

k∏
r=1 ; r 6=i

pr for all i = 1, 2, . . . , k.

Then, for a given j ∈ {1, 2, . . . , k}, in view of (0.1), we need to choose ai’s in such

a way that for all i ∈ {1, 2, . . . , k}\{j}
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ai = siqi for some integer qi, (0.2)

and simultaneously

aj = sjqj ≡ −1 (mod pj) for some integer qj . (0.3)

As si’s are given and gcd(si, pi) = 1 for all i = 1, 2, . . . , k, we consider the

simultaneous congruences

s1X ≡ −1 (mod p1);

s2X ≡ −1 (mod p2);

...

skX ≡ −1 (mod pk).

Since pi’s are all distinct prime numbers, by Chinese remainder theorem, there

exist infinitely many integers q satisfying the above congruences. Then, by

choosing ai = siq for all i = 1, 2, . . . , k we see that each ai satisfies (0.2) and

(0.3). Hence n = ps1q1 ps2q2 . . . pskqk lies in T for each q. But there are infinitely

many such q’s, therefore we see that T is an infinite subset of S and hence the

theorem. �
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Abstract. The study of partitions of numbers forms an important area in

number theory. The theoretical developments usually make use of the prop-

erties of generating functions. The recurrence relations for the development

of partition theory can be developed independently. The theme of this paper

is to explore the application of recursive relations for partition functions.

1. Introduction

A partition of a positive integer n is its representation as a sum of natural

numbers, called parts or summands. The order of the summands is irrelevant. For

example, 4+2+1, 2+2+1+1+1 are partitions of the number 7. Since the order

is irrelevant, 4 + 2 + 1 is the same partition as 2 + 4 + 1. The number of partitions

of an integer n is denoted by p(n). For example, the partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

.
Thus, p(5) = 7 . The reader can easily verify that p(1) = 1, p(2) = 2, p(3) = 3,

p(4) = 5, p(6) = 11, and p(7) = 15.

The partition function is a part of additive number theory, and good references

for this topic are [1] and [2]. A partition of a number is referred to as a restricted

partition if one puts some conditions on the summands such as requiring an odd

number of parts or restricting the smallest part, etc.; otherwise it is referred to as a

partition or an unrestricted partition. We shall consider here restricted partitions.

In this line of exposition, we wish to mention that the paper [3] by Hansraj

Gupta is an excellent reference. In particular, there is an impressive list of refer-

ences given in this paper. The book [4] by the same author is also a good reference

for further reading. We thank the referee for making us aware of these two ref-

erences and for the valuable comments that improved the article. For general

reading on number theory, we recommend [5]. Finally, for an easy read on the

partition function, we suggest [6].

We begin our discussion with an example. In the following table, we list the 15

partitions of the number 7 in a special grouping which we ask the reader to study
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now. Note that in the last column, p(m, 7) stands for the number of partitions

of 7 obtained using the largest part equal to m.

m Partitions of 7 obtained using the largest part equal to m. p(m, 7)

7 7 1

6 6 + 1 1

5 5 + 2, 5 + 1 + 1 2

4 4 + 3, 4 + 2 + 1, 4 + 1 + 1 + 1 3

3 3 + 3 + 1, 3 + 2 + 2, 3 + 2 + 1 + 1, 3 + 1 + 1 + 1 + 1 4

2 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1 3

1 1 + 1 + 1 + 1 + 1 + 1 + 1 1

It is observed from the table that
∑7

m=1 p(m, 7) = 1+1+2+3+4+3+1 = 15 = p(7),

the total number of partitions of 7. This suggests that for any n in general, the

partition function p(n) can be given by

p (n) =
∑n

m=1
p (m,n),

where p(m,n) denotes the number of partitions of n obtained using the largest part

equal to m, and this set is referred to as the set representing p(m,n). Assuming

that this is true, it is clear that we then need to find a method to compute p(m,n)

for any n and for m = 1, · · · , n. One way of doing this is to express p(m,n) in

terms of p(x, y), where x ≤ m(≤ n) and y ≤ n. In this way, the calculation of

p(m,n) can possibly be made easier. Consider the 7 partitions that arise when we

calculate p(3, 9). These can be expressed as a union of two sets as:
3 + 2 + 2 + 2

3 + 2 + 2 + 1 + 1

3 + 2 + 1 + 1 + 1 + 1

3 + 1 + 1 + 1 + 1 + 1 + 1


⋃

3 + 3 + 3

3 + 3 + 2 + 1

3 + 3 + 1 + 1 + 1

 .

The first set consists of all those partitions of 9 in which 3 appears just once. If we

replace this 3 by 2, we get the partitions whose count yields exactly p(2, 8). The

second set consists of all those partitions of 9 in which 3 appears more than once.

If we remove one of the 3’s in each partition, we get the set of partitions whose

count yields exactly p(3, 9−3) = p(3, 6). Thus, we get p(3, 9) = p(2, 8)+p(3, 6).

Let us consider another example. Let p′(m,n) denote the number of partitions

of n with largest part less than or equal to m. Consider p′(3, 7). The list of the

partitions of p′(3, 7) is: 3 + 3 + 1, 3 + 2 + 1 + 1, 3 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 1,

2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1. (Note, for

example, that the partition 2 + 5 of 7 can’t appear in this list). Thus p′(3, 7) = 7.

To find the recurrence relation, we split these 7 partitions into two sets as follows:
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2 + 2 + 2 + 1

2 + 2 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1


⋃

3 + 3 + 1

3 + 2 + 1 + 1

3 + 1 + 1 + 1 + 1


The first set consists of all those partitions of 7 whose greatest part is less than

or equal to 2. There are 4 = p′(2, 7) = p′(3 − 1, 7) partitions in this set. The

second set consists of all those partitions of 7 in which the largest part is 3. If this

3 is removed from each partition, we get the set of partitions whose count yields

exactly 3 = p′(3, 4) = p′(3, 7− 3). Thus we see that p′(3, 7) = p′(2, 7) + p′(3, 4).

In the next two sections, we shall prove in general the recurrence relations we

discussed in the above two examples. We will also consider other restricted parti-

tions. In Section 3, we will consider unrestricted partitions and give a recurrence

relation that expresses p(n) in terms of restricted partitions. More specifically, we

will show that

p(n) =
∑n

m=1

∑m(m+1)/2

k=m
C(m, k)p(n− k),

where C(m,n) denotes the difference between the number of distinct partitions of n

starting with the largest number m and with odd number of parts, and the number

of distinct partitions of n with the largest number m and with even number of

parts. (See Theorem 3.2.) We then use this result to prove the celebrated formula

for p(n):

p(n) =
∑∞

k=1
(−1)

k+1 {p (n− k(3k − 1)/2) + p (n− k(3k + 1)/2)}.

(See Theorem 3.3 below.)

2. Restricted Partitions and Recurrence Relations

We now state and prove the general recurrence formula for p(m,n)

Theorem 2.1. With p(m,n) as considered earlier, we have a recurrence relation

for it given by
p(m,n) = p(m− 1, n− 1) + p(m,n−m) (2.1)

Before we give the proof, let us offer an example that illustrates this recurrence

by considering p(4, 10). Here m = 4, n = 10 and one observes that the set {4+4+2,

4+4+1+1, 4+3+3, 4+3+2+1, 4+3+1+1+1, 4+2+2+2, 4+2+2+1+1,

4+2+1+1+1+1, 4+1+1+1+1+1+1} represents p(4, 10) and hence p(4, 10) =

9. One can easily see from this set that p(4, 10 − 4) = 2, p(3, 6) = 3, p(2, 6) =

3, p(1, 6) = 1; and their sum is p(4, 10).

Proof. Assume that we have computed the values of p(m,n − m), p(m − 1, n −
m), ..., p(1, n −m). Then the set representing p(m,n) is obtained from the sets

representing each of p(m,n−m), p(m− 1, n−m), ..., p(1, n−m) by adding m to

each member of each of these sets and taking their union. Thus

p(m,n) = p(m,n−m) + p(m− 1, n−m) + · · ·+ p(1, n−m). (2.2)
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Replace n by n− 1 and m by m− 1 in (2.2) to get

p(m− 1, n− 1) = p(m− 1, n−m) + p(m− 2, n−m) + · · ·+ p(1, n−m). (2.3)

Subtracting (2.3) from (2.2) and solving for p(m,n) we get (2.1). �

Theorem 2.2. If h(m,n) denotes the number of those partitions of n in which

the least part is equal to m, then h(m,n) satisfies the following recurrence relation

h(m,n) = h(m− 1, n− 1)− h(m− 1, n−m). (2.4)

Before we give the proof, let us offer an example that illustrates this recurrence

by considering h(2, 8). Note that the set representing h(1, 7) can be expressed as

the union of two sets as follows:


6 + 1

4 + 2 + 1

3 + 3 + 1

2 + 2 + 2 + 1


⋃



5 + 1 + 1

4 + 1 + 1 + 1

3 + 2 + 1 + 1

3 + 1 + 1 + 1 + 1

2 + 2 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1


The first set consists of all those partitions of 7 in which the least part (equal to

1) appears just once. The second set consists of all those partitions of 7 in which

the least part appears more than once. Observe that if the least part of each

member in the first set is incremented by 1, it results in a set of partitions of 8

whose least part is 2; and this represents h(2, 8). The other set cannot be dealt

similarly because to increment one least part by 1 in each member of the second

set would require 7 to be incremented by at least 2 (why?). Further, observe

that if one least part is removed from each partition of each set, the set of new

partitions will represent h(1, 6) - the fact which is left to the reader to verify. Thus

h(2, 8) = h(1, 7)− h(1, 6).

We now give the proof of Theorem 2.2.

Proof. The central idea of the proof is same as that of the proof of Theorem

2.1. The main difference is that we now assume here that the values h(m,n−m),

h(m+1, n−m), ..., h(n−m,n−m) are obtained. Then the set representing h(m,n)

is obtained from the sets representing each of h(m,n −m), h(m + 1, n −m), ...,

h(n − m,n − m) by adding m to each member of each of these sets and taking

their union. Hence

h(m,n) = h(m,n−m) + h(m+ 1, n−m) + · · ·+ h(n−m,n−m). (2.5)

Replace n by n− 1 and m by m− 1 in (2.5) to get

h(m− 1, n− 1) = h(m− 1, n−m) + h(m,n−m) + · · ·+ h(n−m,n−m) (2.6)

Subtracting (2.6) from (2.5) and solving for h(m,n) we get (2.4). �

The methods of proofs and the results of the Theorems 2.1 and 2.2 have several

consequences. We prove some of these in the following corollaries.
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Corollary 2.3. With p′(m,n) considered as earlier, we have a recurrence relation

for it given by

p′(m,n) = p′(m− 1, n) + p′(m,n−m).

Proof. We have p′(m,n) = p′(m− 1, n) + p(m,n). From (2.2) we can easily see

that p(m,n) = p′(m,n−m), and the corollary follows. �

Corollary 2.4. If h′(m,n) denotes the number of partitions of n which have the

least part m or larger, then the following recurrence relation holds

h′(m,n) = h′(m+ 1, n) + h′(m,n−m). (2.7)

Proof. We note that h′(m,n) = h′(m+ 1, n) + h(m,n). From (2.5), we have

h(m,n) = h(m+1, n−m)+h(m+2, n−m)+· · ·+h(n−m,n−m) = h′ (m+ 1, n−m) .

This proves (2.7). �

Corollary 2.5. If π(m,n) denotes the number of partitions of n into m parts then

π(m,n) = p(m,n).

Let us first illustrate this corollary through an example using Ferrers diagrams.

Conside m = 3 and n = 8. The set {6+1+1, 5+2+1, 4+3+1, 4+2+2, 3+3+2}
representing π(3, 8) and the set {3 + 1 + 1 + 1 + 1 + 1, 3 + 2 + 1 + 1 + 1, 3 + 2 +

2 + 1, 3 + 3 + 2} representing p(3, 8) are illustrated simultaneouly as follows.

3 1 1 1 1 1

6 • • • • • •
1 •
1 •

3 2 1 1 1

5 • • • • •
2 • •
1 •

3 2 2 1

4 • • • •
3 • • •
1 •

3 3 1 1

4 • • • •
2 • •
2 • •

3 3 2

3 • • •
3 • • •
2 • •

Obviously, in an intuitive way, a look at the diagrams from one direction gives

idea of one set of partitions and a look at it from the other direction gives idea of

the other set. The one-to-one relationship is clear. Observe that n −m = 5 and

the set {1 + 1 + 1 + 1 + 1} represents p(1, 5), the set {2 + 1 + 1 + 1, 2 + 2 + 1}
represents p(2, 5), the set {3 + 1 + 1, 3 + 2} represents p(3, 5) and π(3, 8) = 5 =

p(1, 5) + p(2, 5) + p(3, 5) = p(3, 8). Now, we offer the brief proof of the corollary.

Proof. Let us separate m units from n to represent the m parts. Then π(m,n)

is precisely the sum of the number of partitions of the remaining number n −m
obtained with the largest part equal to m, m − 1, m − 2, ... and 1. This leads to

the same recurrence as defined in Theorem 2.1, with π (1, k) = 1 = p(1, k). �

Theorem 2.6. Let pk(m,n) denote the number of partitions of n with the largest

part equal to m and using parts differing from m by a multiple of k. Then the

following recurrence relation holds

pk(m,n) = pk(m− k, n− k) + pk(m,n−m). (2.8)
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Let us consider a simple example to illustrate this result. Taking k = 2,m = 4, n =

10, consider p2(4, 10) which consists of two partitions 4 + 4 + 2 and 4 + 2 + 2 + 2.

These partitions are separated into two sets, one consisting of those partitions

which have only one part equal to m = 4 (clearly, 4 + 2 + 2 + 2 in this case)

and the other set comprised of the rest (clearly, 4 + 4 + 2 in this case). Then,

for the partitions of the first set having only one part equal to m = 4, this part

is decremented by k = 2, giving a partition (namely, 2 + 2 + 2 + 2 in this case)

of n − k (=8) with largest part m − k = 2 and still only using parts which are

multiples of k = 2, thus belonging to pk(m− k, n− k) (=p2(2, 8) in this case). For

the partitions of the other set, one part equaling m = 4 can be removed from each

partition giving a partition (namely, 4 + 2 in this case) with the largest part still

as m = 4, but now partitioning n −m = 6 and still using multiples of k = 2 as

other parts, thus belonging to pk(m,n−m) (=p2(4, 6) in this case).

We now give the proof of Theorem 2.6

Proof. If pk(m, n − m), pk(m − k, n − m), pk(m − 2k, n − m),

pk(m − 3k, n − m), · · · are obtained then the set representing pk(m,n) is ob-

tained from the sets representing each of pk(m, n − m), pk(m − k, n − m),

pk(m − 2k, n − m), pk(m − 3k, n − m), · · · by adding m to each member of

each of these sets and taking their union. Thus

pk(m,n)=pk(m,n−m)+pk(m−k, n−m)+pk(m−2k, n−m)+pk(m−3k, n−m)+· · · .
In this expression, replace m by m− k and n by n− k to get

pk(m−k, n−k) = pk(m−k, n−m)+pk(m−2k, n−m)+ pk(m−3k, n−m)+ · · · .
Subtracting these equations and solving for pk(m,n) completes the proof of the

theorem. �

Corollary 2.7. If dk(m,n) denotes the number of partitions of n with the largest

part equal to m and using parts differing from m by a multiple of k, then the

following recurrence relations holds
dk(m,n) = dk(m− k, n− k) + dk(m− k, n− k).

Proof. The proof follows proceeding as in the proof of Theorem 2.6. �

Theorem 2.8. If d(m,n) denotes the number of partitions of n using distinct

parts and with the largest part equal to m, then the recurrence relation for d(m,n)

is given by
d(m,n) = d(m− 1, n− 1) + d(m− 1, n−m). (2.9)

By convention, d(m,n) = 0, if m(m+ 1)/2 < n, and d(n, n) = 1.

Proof. If d(m−1, n−m), d(m−2, n−m), ..., d(1, n−m) are obtained then d(m,n)

is obtained by prefixing m to each member of these. Thus

d(m,n) = d(m− 1, n−m) + d(m− 2, n−m) + · · ·+ d(1, n−m).

The rest of the argument is exactly the same as that of Theorem 2.1. �
Corollary 2.9. Let d′(m,n) denote the partition of n using numbers no greater

than m, then the following recurrence relation holds

d′(m,n) = d′(m− 1, n) + d′(m− 1, n−m). (2.10)
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Note that d (n) = d′(n, n).

Proof. We have d′(m,n) = d′(m − 1, n) + d(m,n). Arguing as in the proof of

Theorem 2.8, we have d(m,n) = d′(m− 1, n−m). (2.10) follows from (2.9). �
Remark 2.10. Note that if d(n) is a partition of n into distinct summands, then

d(n) = d′(n, n) =
∑n

m=1
d(m,n).

Theorem 2.11. Let θ(m,n) denote the number of partitions of n into m distinct

parts. Then the following recurrence relation holds for θ(m,n).
θ (m,n) = θ (m,n−m) + θ (m− 1, n−m) . (2.11)

Furthermore,
θ (m,n) = p (m,n−m (m− 1) /2) . (2.12)

Proof. To prove the first recurrence, we note that if n = a1 + a2 + · · · + am is a

partition of n into m distinct parts, then

n−m = (a1 − 1) + (a2 − 1) + · · ·+ (am − 1) .

If a1 = 1, then it is a representation of n − m with m − 1 distinct parts and if

a1 > 1, it is a representation of n−m into m distinct parts. This proves (2.11).

Note that

n− (0 + 1 + 2 + · · ·+m− 1) = (a1 − 0) + (a2 − 1) + · · ·+ (am − (m− 1))

is a presentation of n − m(m − 1)/2. We now apply Corollary 2.5 to conclude

(2.12). �
3. The Partition Function Theorem

Theorem 3.1. Let C(m,n) denote the difference between the number of distinct

partitions of n with largest part m and with odd number of parts, and the number

of distinct partitions of n with largest part m and with even number of parts, then

the following recurrence relation holds.

C (m,n) = C (m− 1, n− 1)− C (m− 1, n−m)

with C(1, 1) = 1. Furthermore,

n∑
m=1

C (m,n) =


1, if k is odd and n = k(3k ± 1)/2,

−1, if k is even and n = k(3k ± 1)/2,

0, otherwise.

(3.1)

Proof. By Theorem 2.8 we have

d (m,n) = d (m− 1, n− 1) + d (m− 1, n−m) .

Observe that each member of the set representing the second term d(m−1, n−m)

of the above relation is a partition of n−m using distinct parts and with largest

part m − 1; and hence, if m is added to it we get a partion of n again using

distinct parts (but now with largest part m). Similarly, each member of the set

representing the first term d(m − 1, n − 1) of the above relation is a partition of

n− 1 using distinct parts and with largest part m− 1; and hence if 1 is added it

we get a partition of n again using distinct parts. In both the cases, number of

partitions does not change, only its type gets changed - odd becomes even and even

becomes odd as one part is addded. If we identify the number of odd partitions as

a positive number, starting with C(1, 1) = 1, and the number of even partitions
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as a negative number, then the left side may be replaced by C(m,n) and the right

two terms may be replaced by C(m− 1, n− 1), and −C(m− 1, n−m).

To prove (3.1), we note that C(m,n) = p0(m,n) − pe(m,n), where po(m,n)

denotes the number of partitions of n using odd number of distinct parts and with

largest part m, and pe(m,n) denotes the number of partitions of n using distict

even number of parts and with largest part m. It follows that∑n

m=1
C(m,n) =

∑n

m=1
(po(m,n)− pe(m,n))

=
∑n

m=1
po(m,n)−

∑n

m=1
pe(m,n) = po(n)− pe(n).

Thus, it suffices to prove

p0(n)− pe(n) =


1, if k is odd and n = k(3k ± 1)/2,

−1, if k is even and n = k(3k ± 1)/2,

0, otherwise.

(3.2)

Before giving the general proof of (3.2), let us consider an example with n =

17. We make use of Franklin's argument using Ferrers diagrams to establish the

relationship. The diagram below illustrates one partition of 17 with k = 4 distinct

parts, namely 17 = 6 + 5 + 4 + 2.
• • • • • •
• • • • •
• • • •
• •

In such a diagram, let NB denote the number of dots in the bottom row and

NS denote the number of dots along the slant line on the right in the northwest

direction from the extreme right upper corner. We look for the possibility of the

bottom dots to be placed on the right or the right dots to be placed at the bottom

to get a valid distinct partition. In this case, we have NB = 2 and NS = 3. Note

that the bottom two dots can be placed on the right as shown in the diagram

below to yield 17 = 7 + 6 + 4.
• • • • • • •
• • • • • •
• • • •

We say the odd partition of 17 corresponding to the even partition 6 + 5 + 4 + 2 is

7 + 6 + 4 and the even partition of 17 corresponding to the odd partition 7 + 6 + 4

is 6 + 5 + 4 + 2. The correspondence is unique. This correspondence does not exist

for two cases for every k. Consider, for example, n = 12 and k = 3. Note that this

is the case of n = k(3k − 1)/2. As can be seen from the diagram below, we have

NB = 3 and NS = 3.
• • • • •
• • • •
• • •

If we now take n = 15 and k = 3 then we have n = k(3k + 1)/2, NB = 4 and

NS = 3, as shown in the diagram below.
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• • • • • •
• • • • •
• • • •

It is clear from each diagram that in both of the above cases we can neither move

NB dots nor NS dots to get distinct partitions of n from the given partition.

We now give the general proof of (3.2). Consider a partition of n given by

n = a1 + a2 + · · ·+ aj + · · ·+ ak with (3.3)

a1 > a2 > a3 > · · · > ak, ai = ai+1 + 1 for i = 1, 2, · · · j − 1 and aj > aj+1 + 1.

We now consider four cases:

Case 1. ak ≤ j < k or ak < j ≤ k.
In this case, let ak = r, then replace r in (3.3) by adding 1 to the first r terms in

the sum to get

n = (a1 + 1) + (a2 + 1) + · · · (ar + 1) + ar+1 + · · ·+ aj + · · ·+ ak−1. (3.4)

Clearly there is a one-to-one correspondence between representations of n in (3.3)

and (3.4). Thus po(n)− pe(n) = 0.

Case 2. ak > j.

In this case, define ak+1 = j, then subtract 1 from the first j terms of (3.3) and

add ak+1 to get

n = (a1 − 1) + (a2 − 1) + · · · (aj − 1) + aj+1 + · · ·+ ak + ak+1. (3.5)

Clearly, there is a one-to-one correspondence between representations of n in (3.3)

and (3.5). Hence po(n)− pe(n) = 0.

Case 3. j = k = ak − 1. In this case, the terms in (3.3) are

ak = k + 1, ak−1 = k + 2, ak−2 = k + 3, · · · , a1 = k + (k + 1)

and hence
n = 2k + (2k − 1) + · · ·+ (k + 1) = k(3k + 1)/2.

Thus, if k is odd, then we cannot write n as distinct parts with even number of

terms and hence po(n)−pe(n) = 1. Similarly, if k is even, we have po(n)−pe(n) =

−1.

Case 4. j = k = ak. In this case, the terms in (3.3) are

ak = k, ak−1 = k + 1, ak−2 = k + 2, · · · , a1 = k + (k − 1)

and hence
n = (2k − 1) + · · ·+ (k + 1) + k = k(3k − 1)/2.

We arrive at the same conclusion as in Case 3. �

Theorem 3.2. The partition p(n) of n is given by

p(n) =
∑n

m=1

∑m(m+1)/2

k=m
C(m, k) p(n− k),

with p(0) = 1.
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Proof. Note that
p (n) =

∑n

m=1
p (m,n).

Using the recurrence relation of p(m,n) given in Theorem 2.1, we can write

p(n)=
n∑

m=1

p(m− 1, n− 1)+

bn/2c∑
m=1

p(m,n−m)=p (n− 1)+

bn/2c∑
m=1

p(m,n−m), (3.6)

where bn/2c is the floor function, which equals the integer part of n/2. This gives∑bn/2c

m=1
p(m,n−m) = p(n)− C(1, 1)p(n− 1), (3.7)

with C(1, 1) = 1. Again using the recurrence of Theorem 2.1 on p(m,n−m), we

have∑bn/2c

m=1
p(m,n−m) =

∑bn/2c

m=2
p(m− 1, n− 2− (m− 1))+

∑bn/3c

m=1
p(m,n− 2m).

Since∑bn/2c

m=1
p(m− 1, n− 1−m) =

∑bn/2c−1

m=2
p(m,n− 2−m)

=
∑b(n−2)/2c

m=2
p(m,n− 2−m) = p(n− 2)− p(n− 3),

where we have used (3.6) with n replaced by n− 2, the previous equation can be

expressed as∑bn/2c

m=1
p(m,n−m) = p(n− 2)− p(n− 3) +

∑bn/3c

m=1
p(m,n− 2m). (3.8)

Combining (3.7) and (3.8), and noting that C(1, 0) = 0, C(1, 2) = 0, C(2, 2) =

C(1, 1)− C(1, 0), and C(2, 3) = C(1, 2)− C(1, 1), we get∑bn/3c

m=1
p(m,n− 2m) = p(n)− C(1, 1)p(n− 1)−

∑3

k=2
C(2, k)p(n− k). (3.9)

As before, we use the recurrence formula of Theorem 2.1 on p(m,n− 2m) to write

bn/3c∑
m=1

p(m,n− 2m) =

bn/3c∑
m=1

p(m− 1, n− 2m− 1) +

bn/4c∑
m=1

p(m,n− 3m). (3.10)

But, the first term on the right can be expressed as∑bn/3c

m=1
p(m− 1, n− 2m− 1) =

∑bn/3c

m=2
p(m− 1, n− 3− (m− 1))

=
∑b(n−3)/3c

m=1
p(m,n− 3− 2m).

We now use the recurrence of Theorem 2.1 twice to get

p(m,n− 3) = p(m− 1, n− 4) + p(m,n− 3−m)

= p(m− 1, n− 4) + p(m− 1, n− 4−m) + p(m,n− 3− 2m).

Solving for p(m,n− 3− 2m) and summing over m, we obtain

b(n−3)/3c∑
m=1

p(m,n− 3− 2m)=
b(n−3)/3c∑

m=1
p(m,n− 3)−

b(n−3)/3c∑
m=1

p(m−1, n−4)

−
b(n−3)/3c∑

m=1
p(m− 1, n− 4−m)−

b(n−3)/3c∑
m=1

p(m,n− 3− 2m).

(3.11)

We note that
b(n−3)/3c∑

m=1
p(m,n− 3) = p(n−3) and

b(n−3)/3c∑
m=1

p(m,n− 4) = p(n−4).

From the recurrence of Theorem 2.1, we also have
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m=1
p(m− 1, n− 4−m)

=
∑b(n−3)/3c

m=1
p(m,n− 5)−

∑b(n−3)/3c

m=1
p(m,n− 6) = p(n− 5)− p(n− 6).

Thus, (3.11) becomes

b(n−3)/3c∑
m=1

p(m,n− 3− 2m) = p(n− 3)− p(n− 4)− p(n− 5) + p(n− 6). (3.12)

Combining (3.9), (3.10), (3.12), and the recurrence formula for C(m,n) given in

Theorem 3.1, we obtain∑bn/4c

m=1
p(m,n− 3m) = p(n)− C(1, 1)p(n− 1)−

∑3

k=2
C(2, k)p(n− k)

−
∑6

i=3
C(3, j)p(n− j). (3.13)

To summarize what we have so far, let us define

Q1(n) = p(n)− C(1, 1)p(n− 1), Q2(n) = Q1(n)−
∑3

k=2 C(2, k)p(n− k)

and Q3(n) = Q2(n)−
∑6

i=3 C(3, j)p(n− j).

Then (3.13) can be expressed as
∑bn/4c

m=1 p(m,n− 3m) = Q3(n).

Let us also look closely at the process that produced the equation in (3.13). The

last sum in this formula was obtained after applying the recurrence of Theorem

2.1 four times. Hence the four terms in the summation. It is also worth noting

that this is the third time we were using the recurrence and hence the sum from

j = 3 to j = 6 = 3(3 + 1)/2. This leads us to conjecture that∑bn/kc

m=1
p(m,n− km) = Qk−1(n) =

∑k(k+1)/2

j=k
C(k, j)p(n− j). (3.14)

When k = n, we obtain

0 =
∑bn/nc

m=1 p (m,n− nm) = p(n)−
∑n

m=1

∑n(n+1)/2
j=m C(m, j)p(n− j).

The result follows by solving for p(n). �

Theorem 3.3. (The Partition Function Theorem). The partition of n is

given by

p(n) =
∑∞

k=1
(−1)

k+1 {p (n− k(3k − 1)/2) + p (n− k(3k + 1)/2)}.

with p(0) = 1, and p(j) = 0 if j < 0.

Proof. From the Theorem 3.2, we have

p(n) =
∑n

m=1

∑m(m+1)/2

k=m
C(m, k)p(n− k).

Noting that C(m, k) is zero when k < m and p(n− k) is zero when k > n, we can

put the above equation in the form

p(n) =
∑n

k=1
p(n− k)

∑n

m=1
C(m, k).

The result then follows from (3.1). �
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Theorem 3.4. The distinct partitions d(n) of n is given by

d (n) =
∑r

m=1

∑m(m+1)/2

k=m
C (m, k) d (n− k) + δr,

where

r(r − 1)/2 ≤ n ≤ r(r + 1)/2 and δk =

{
1, if k(k+1)

2 = n,

0, otherwise.

Proof. We make use of the relation d (n) =
∑n

m=1 d (m,n). For n = 1, d(1) = 1.

Using the recurrence relation given in Theorem 2.8, we have

d(n) =
∑n

m=1
d(m− 1, n− 1) +

∑b(n+1)/2c

m=2
d(m− 1, n−m)

= d(n− 1) +
∑b(n+1)/2c

m=2
d(m− 1, n−m).

The second term vanishes when n = 2, and is equal to 1 (or d(1)) when n = 3.

We rewrite this in the form∑b(n+1)/2c

m=2
d(m− 1, n−m) = d(n)− C(1, 1)d(n− 1). (3.15)

Upon expanding, we get∑b(n+1)/2c

m=3
d(m− 2, n−m− 1) +

∑b(n+3)/3c

m=3
d(m− 2, n− 2m+ 1)

= d(n)− C(1, 1)d(n− 1)

On substituting from (3.15),

b(n+3)/3c∑
i=3

d (i− 2, n− 2i+ 1) = d (n)− C (1, 1) d (n− 1)−
3∑

j=2

C (2, j) d (n− j).

At step k, we get∑bn+k(k−1)/2
k c

m=k
d (m− k + 1, n− (k − 1)m+ (k − 1)(k − 2)/2)

= d(n)−
∑k

m=1

∑m(m+1)/2

j=m
C(m, j)d(n− j).

The left side has a value of 1 when the upper limit is exactly k. The result follows

from this equation. �

Theorem 3.5. The partition function d(n) can be expressed as

d (n) =
∞∑
k=1

(−1)
k+1

(d(n− k(3k − 1)) + d(n− k(3k + 1))) + δ,

where d(0) = 1 and δ =

{
1 if n is a triangular number,

0 otherwise.

Proof. The result follows from the arguments in the proof of Theorem 3.4. �
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PROBLEM SECTION

In the last issue of the Math. Student Vol. 87, Nos. 1-2, January-June (2018),

we had invited solutions from the floor to the remaining problems 6, 8, 9, correctly

stated 10 and 11 of the MS, 86, 3-4, 2017 as well as to the six new problems 1, 2,

3, 4, 5 and 6 presented therein till October 31, 2018.

The status regarding the remaining problems of MS, 86, 3-4, 2017 is as under.

1. We received from the floor one correct solution to the problems 9 and 10

which we publish here.

2. Complete and correct solutions were not received from the floor for the

problems 6, 8 and 11 and hence we provide in this issue the Proposer’s solution

to these problems.

The status regarding the problems of MS 87, 1-2, 2018 is as under.

1. We received from the floor one correct solution to problem 3 which we

publish here.

2. No solutions were received from the floor to the remaining problems 1,

2, 4, 5, 6 and 7. Readers can try their hand on these till April 30, 2019.

In this issue we first present six new problems. Solutions to these problems as

also to the remaining problems 1, 2, 4, 5, 6 and 7 of MS 87, 1-2, 2018, received

from the floor till April 30, 2019, if approved by the Editorial Board, will be

published in the MS 88, 1-2, 2019.

Problem proposed by M. Ram Murty. MS-2018, Nos. 3-4: Problem-7:

Prove that
∞∑

m,n=1

(m,n)

m2n2
=

5

2

∞∑
n=1

1

n3
,

where (m,n) denotes the greatest common divisor of m and n.

Problems proposed by B. Sury

MS-2018, Nos. 3-4: Problem-8:

If dae denotes the smallest integer greater than or equal to a, prove:

(i) the closest integer to a is da− 1/2e.
(ii) Further, prove∑n

k=1
d(2k − 1) =

∑n

r=1
dn/(2r − 1)− 1/2e.

© Indian Mathematical Society, 2018 .
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MS-2018, Nos. 3-4: Problem-9:

Determine with proof the set of all polynomials with complex coefficients

that take rational values at all rational numbers and irrational values at all

irrational numbers.

MS-2018, Nos. 3-4: Problem-10:

Let a1 < a2 < · · · be an infinite sequence of pairwise coprime positive

integers which are all composites. Prove that
∑∞
n=1

1
an

<∞.

MS-2018, Nos. 3-4: Problem-11:

For any positive integer n and odd prime p, prove that the following

congruence holds modulo p:

(np − n)/p ≡ −
∑p−1

r=1
(1r + 2r + · · ·+ nr)/r.

Here, two rational numbers s and t are said to be congruent modulo p if their

difference u
v written in the lowest terms satisfies p|u.

MS-2018, Nos. 3-4: Problem-12:

proposed by N. Tejaswi, The Netherlands, through B. Sury:

A spider moving along the integer lattice can move from any point (u, v)

to either one of the two points (u + v, v) or (u, u + v). Show that no matter

which point (u, v) it starts from for any integers u, v, the spider can reach a

point of the form (m2, n2) in a finite number of steps.

Solution from the floor: MS-2017, Nos. 3-4: Problem 9: Pick and fix

your favourite number α. Consider the n×n matrix with entries α+ i; 1 ≤ i ≤ n2

written in a spiral fashion clockwise starting with α+ 1 in the (1, 1)-position. For

example, the matrix for n = 3 isα+ 1 α+ 2 α+ 3

α+ 8 α+ 9 α+ 4

α+ 7 α+ 6 α+ 5

 .

Find the determinant of this matrix for general n.

(Solution submitted on 16-06-2018 by Dasari Naga Vijay Krishna, Machilipat-

nam, Andhra Pradesh-521001; Vijay9290009015@gmail.com).

Solution. Consider a spiral n× n matrix in α as under:

Vn(α) =


α+ 1 α+ 2 → α+ n− 1 α+ n

α+ 4n− 4 → α+ 5n− 5 α+ 5n− 6 α+ n+ 1

α+ 4n− 3 → → ↓ ↓
↑ ↑ ← ← α+ 2n− 2

α+ 3n− 2 α+ 3n− 3 ← α+ 2n α+ 2n− 1

 .
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First consider n = 3 and α = 0 so that we have the matrix V3(0). We find its

determinant in two different ways and then we will generalize the process to find

the determinant of Vn(α). Clearly

det(V3(0)) =

∣∣∣∣∣∣∣
1 2 3

8 9 4

7 6 5

∣∣∣∣∣∣∣ = 8

∣∣∣∣∣∣∣
1 1 1

8 9 4

7 6 5

∣∣∣∣∣∣∣ (R1 → R1 +R3)

= 8

∣∣∣∣∣∣∣
1 1 1

7 8 3

6 5 4

∣∣∣∣∣∣∣ (Ri → Ri −R1, i = 2, 3)

=
8

6

∣∣∣∣∣∣∣
0 1 2

7 8 3

6 5 4

∣∣∣∣∣∣∣ (R1 → 6R1 −R3) = detV3(−1)

as can be verified. Thus 6 det(V3(0)) = 8 det(V3(−1)). Now, applying the same

operations in the case of the general spiral matrix Vn(0), we get

det(Vn(0)) =

∣∣∣∣∣∣∣∣∣∣
1 · · · n− 1 n

4n− 4 · · · 5n− 6 n+ 1
... · · ·

...
...

3n− 2 · · · 2n 2n− 1

∣∣∣∣∣∣∣∣∣∣
= (3n− 1)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1 1

4n− 4 · · · 5n− 6 n+ 1
... · · ·

...
...

3n− 2 · · · 2n 2n− 1

∣∣∣∣∣∣∣∣∣∣
(R1 → R1 +Rn)

= (3n− 1)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1 1

4n− 5 · · · 5n− 7 n
... · · ·

...
...

3n− 3 · · · 2n− 1 2n− 2

∣∣∣∣∣∣∣∣∣∣
(Ri → Ri −R1, i = 2 · · ·n)

=
(3n− 1)

(3n− 3)

∣∣∣∣∣∣∣∣∣∣
0 · · · n− 1 2n− 1

4n− 5 · · · 5n− 7 n
... · · ·

...
...

3n− 3 · · · 2n− 1 2n− 2

∣∣∣∣∣∣∣∣∣∣
(R1 → (3n− 3)R1 −Rn)

=
(3n− 1)

(3n− 3)
Vn(−1),

as can be verified, and hence (3n − 3) det(Vn(0) = (3n − 1) det(Vn(−1)). Since

det(Vn(α)) is obviously a polynomial in α of degree 1, say

det(Vn(α)) = Anα+Bn, so that det(Vn(0)) = Bn and det(Vn(−1)) = Bn −An, it

follows that (3n− 3)Bn = (3n− 1)(Bn −An), that is,
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An = 2/(3n− 1)Bn. (0.1)

Observe that, as seen above

B3 = det(V3(0)) = 8

∣∣∣∣∣∣∣
1 1 1

8 9 4

7 6 5

∣∣∣∣∣∣∣ , so that 7B3(0) = 8

∣∣∣∣∣∣∣
7 7 7

8 9 4

7 6 5

∣∣∣∣∣∣∣ ;
but also B3 =

∣∣∣∣∣∣∣
1 2 3

8 9 4

7 6 5

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−7 −7 −1

8 9 4

7 6 5

∣∣∣∣∣∣∣ (R1 → R1 −R2).

Therefore, adding these we get

15 B3 = 8

∣∣∣∣∣∣∣
0 0 6

8 9 4

7 6 5

∣∣∣∣∣∣∣ = 8 × 6

∣∣∣∣∣8 9

7 6

∣∣∣∣∣ = (8 × 6 × 3)

∣∣∣∣∣1 2

4 3

∣∣∣∣∣ = (8 × 6 × 3) B2, that

is, B3 = 8×6
5 B2. To obtain expression for Bn in terms of Bn−1, one can apply the

same operations and procced ahead. Thus

Bn = det(Vn(0)) =

∣∣∣∣∣∣∣∣∣∣
1 · · · n− 1 n

4n− 4 · · · 5n− 6 n+ 1
... · · ·

...
...

3n− 2 · · · 2n 2n− 1

∣∣∣∣∣∣∣∣∣∣
.

We first subtract the second row from the first, then add (4n− 5)(111 · · · 11) and

finally we rebuild JVn−1(0)J in the lower left part of the matrix, where J is the

anti-Identity matrix to get

Bn = ((3n− 1)/(3n− 4))

∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 4n− 6

. . .
...

. JVn−1(0)J .
...

. . .
...

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1((3n− 1)/(3n− 4))(4n− 6) det(Vn−1(0))

= (−1)n+1((3n− 1)/(3n− 4))(4n− 6)Bn−1.

This recursively gives

Bn = (−1)
n(n−1)

2 2n−2(3n− 1)(1.3.5 · · · (2n− 3))

= (−1)
n(n−1)

2

(
3n− 1

2

) (
(2n− 2)!

(n− 1)!

)
.

Since det(Vn(α)) = Anα+Bn and An = (2/(3n− 1))Bn, therefore

det(Vn(α))=

(
2α+ 3n− 1

3n− 1

)
Bn=

(
2α+ 3n− 1

2

)
(−1)

n(n−1)
2

(
(2n− 2)!

(n− 1)!

)
. (0.2)

This is the expression for the determinant of the n× n spiral matrix.

Verification: Taking n = 2 in the expression we get V2(α) = 2α+5
2 (−1) 2!

1! =

−(2α+ 5). Also, from the definition, V2(α) =

∣∣∣∣∣α+ 1 α+ 2

α+ 4 α+ 3

∣∣∣∣∣ = −(2α+ 5).
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Take now n = 3 in the above expression. We get V3(α) = 2α+8
2 (−1) 4!

2!= −(12α+

48). On the other hand by definition, V3(α) =

∣∣∣∣∣∣∣
α+ 1 α+ 2 α+ 3

α+ 4 α+ 8 α+ 9

α+ 7 α+ 6 α+ 5

∣∣∣∣∣∣∣ = (α +

1)(4α + 21) − (α + 2)(2α + 12) + (α + 3)(−2α − 15) = (−12α − 48).

The above expression is thus verified for n = 2 and n = 3.

Solution from the floor: MS-2017, Nos. 3-4: Problem 10: Show that

there does not exist a square matrix over rational numbers whose characteristic

polynomial is X2 − 3.

(Solution submitted on 25-05-2018 by Dasari Naga Vijay Krishna, Machilipat-

nam, Andhra Pradesh-521001; Vijay9290009015@gmail.com).

Solution. We first prove some lemmas related to divisibility which are needed in

solving the problem.

Lemma 0.1. 3 divides sum of two perfect squares iff 3 divides each of them.

Proof. If 3|x and 3|y then x = 3x1 and y = 3x2 for some integers x1, x2. Then

x2 + y2 = 3(3x21 + 3x22) and hence 3|(x2 + y2). To prove the converse we use

congruency. Suppose 3|(x2 + y2) so that x2 + y2 ∼= 0(mod 3). We know that

x, y ∼= 0, 1,−1(mod 3) and x2, y2 ∼= 0, 1(mod 3). Hence x2 + y2 ∼= 0 + 0, 0 + 1, 1 +

0, 1 + 1(mod 3) = 0, 1, 2(mod 3). It follows that x2 + y2 ∼= 0(mod 3) only when

x, y ∼= 0(mod 3) which implis that x, y are divisible by 3. �

Lemma 0.2. The only integer solution for the equation x2 + y2 = 3z2 is (0, 0, 0).

Proof. Obviously 3|3z2. By the above Lemma, we then have

3|3z2 ⇒ 3|(x2 + y2)⇒ 3|x, 3|y ⇒ x = 3x0, y = 3y0, for some x0, y0 ∈ Z

⇒ 3z2 = x2 + y2 = 9x20 + 9y20 ⇒ z2 = 3x20 + 3y20 ⇒ 3|z2 ⇒ 3|z

⇒ z = 3z0 for some z0 ∈ Z⇒ x20 + y20 = 3z20 .

This process continues infinitely. Hence, by Fermat principle of infinite decent,

the only integer solution for this equation is (0, 0, 0). �
We now give solution to the problem. Consider any symmetric square matrix

of order 2, say, A =

(
a b

b c

)
. (we need to consider only 2 × 2 symmetric matrix

because our characteristic polynomial x2−3 is of second degree). The characteristic

polynomial of A is x2 − tr(A)x + det(A) = x2 − (a + c)x + (ac − b2). Suppose A

is the matrix over Q whose characteristic polynomial is x2 − 3. Then comparing

these two polynomials, we get a + c = 0, ac − b2 = −3. This gives c = −a and

hence a2 + b2 = 3. If a, b are rational numbers with least common denominator

z then x = za and y = zb are integers satisfying x2 + y2 = 3z2. But by the

second Lemma, we know that (0, 0, 0) is the only solution. Hence x = 0, y = 0,

and therefore a = 0, b = 0 - implying that characteristic polynomial of A is x2, a

contradiction as the given polynomial is x2 − 3. This completes the solution.



Member's copy - not for circulation 

156 PROBLEM SECTION

Solution from the floor: MS-2018, Nos. 1-2: Problem 3: Consider a con-

vex polygon of n sides. Draw n− 3 diagonals which do not intersect inside. Then,

the polygon is broken into n− 2 triangles. Let ai be the number of those triangles

formed which have Pi as vertex. For instance, for n = 6, one may draw diagonals

P1P3, P1P4 and P1P5. in this case, (a1, a2, a3, a4, a5, a6) = (4, 1, 2, 2, 2, 1). Notice

that 4− 1
1− 1

2− 1
2− 1

2

= 0. Prove that in general

a1 −
1

a2 − 1
a3− 1

···− 1
an−1

= 0. (0.3)

(Solution submitted on 16-06-2018 by Dasari Naga Vijay Krishna, Machilipat-

nam, Andhra Pradesh-521001; Vijay9290009015@gmail.com).

Solution. For simplicity, let us write the left side of (0.3) as 〈a1, a2, · · · , an−1〉,
which we prove to be equal to 0 by induction on n. More precisely, for n ≥
3, we will show that 〈ak, ak+1, ak+2, · · · , an−1〉 is positive for 1 < k < n and

〈a1, a2, a3, · · · , an−1〉 = 0. For induction base n = 3, clearly (a1, a2) = (1, 1) and

hence 〈a1, a2〉 = 1 − 1
1 = 0. Thus (0.3) is true for n = 3. Now assume n > 3 and

that the statement holds for n− 1.

Write E for the collection of edges of the n-gon and ∆ for the collection of triangles

in the triangulation. Each x ∈ E belongs to exactly one ∆ ∈ T and this induces

a mapping φ : E → T. We have |E| = n, |T | = n − 2 and |φ−1(∆)| ≤ 2 for all

∆ ∈ T, hence there exist 4 distinct edges x, y, z, t ∈ E with φ(x) = φ(y) = ∆1

and φ(z) = φ(t) = ∆2. Since x, y and z, t have a vertex in common we can write

∆1 = PiPi+1Pi+2,∆2 = PjPj+1Pj+2, where 1 ≤ i, j ≤ n are distinct. All bases

are to be taken modulo n. we may assume i 6= n − 1. Then we can verify that

∆ = ∆1 as a cap - meaning that we obtain a triangulation of an (n− 1)-gon if we

delete ∆ from T. Also i 6= n − 1 guarantees that Pn is not the middle vertex of

this cap. We consider three cases.

Case 1. n /∈ {i, i+ 1, i+ 2}. Then we have (a1, a2, · · · , an−1) = {σ, α, 1, β, τ},
where σ stands for a1, a2, · · · , ai−1, τ stands for ai+3, ai+4, · · · , an−1, (both pos-

sibly empty) and α, β > 1. If we delete ∆ from T, we obtain the sequence

(σ, α − 1, β − 1, τ) and to this form we may apply the induction hypothesis. All

forms corresponding to suffixes (β − 1, τ) are positive by induction hypothesis,

hence the same holds for the suffixes of the sequence (β, τ). Write x = 〈β, τ〉, then

x > 1, 〈1, β, τ〉 = 1− 1/x > 0 and 〈α, 1, β, τ〉 = 〈σ, 1, x〉 = α − 1
1− 1

x

= α − x
x−1 =

α− 1− 1
x−1 = 〈α− 1, x− 1〉 = 〈α− 1, β − 1, τ〉.

If σ is non- empty, this value is positive by the induction hypothesis. For

each suffix φ of σ we have 〈φ, α, 1, β, τ〉 = 〈φ, α − 1, β − 1, τ〉 and the induction

hypothesis for n follows. The other cases are easier.
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case-2. i = n. Then we have (a1, a2, · · · , an−1) = (1, α, σ, ) and deleting ∆

we obtain (α − 1, σ). By the induction hypothesis we have α − 1 = 1/σ, hence

〈α, σ〉 = 1 and 〈1, α, σ〉 = 〈1, 1〉 = 0. The induction hypothesis for n follows.

Case-3. i = n− 2. We then have (a1, a2, · · · , an−1) = (σ, α, 1) and deleting ∆

we obtain (σ, α − 1). The induction hypothesis for n is obvious in this case, and

we are done.

Solution by the Proposer S. K. Tomar: MS-2017, Nos. 3-4: Problem 6:

Using the techniques of calculus of variation, find the minimum distance between

the yolk and ellipsoidal shell of an egg. You may take the yolk as a sphere and

the shell as ellipsoidal both centered at origin, that is, x2 + y2 + z2 = 4 and
x2

25 + y2

16 + z2

9 = 1.

Solution. The problem is to find the minimum distance between the yolk and the

ellipsoidal shell of an egg. The yolk of an egg is of spherical shape having certain

radius, and the shell of the egg is of ellipsoidal shape, so let us take their equations

as

x2 + y2 + z2 = 4, and (0.4)

(x2/25) + (y2/16) + (z2/9) = 1. (0.5)

Let A (x0, y0, z0) be any point on the surface of the yolk and B (x1, y1, z1) be

any point of the surface of the shell. We can draw number of curves joining these

points A and B. The functional is of the form

I[y, z] =

∫ x1

x0

√
1 + y′2 + z′2dx, (0.6)

where the end points x0 and x1 are the movable on the surface of (0.4) and (0.5)

respectively. The problem is to find an extremal of (0.6) having movable end

points. The geometrical sketch of the problem is given in Figure-1. In the moving
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Figure 1. Rough Sketch

end points problems, if one end point of the extremal moves along the surface

z = φ(x, y) and the other end point moves along the surface z = ψ(x, y), then the
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arbitrary constants occurring in the solution of Euler’s equation are determined

by the following transversality conditions:

[F − y′Fy′ + (φ′x − z′)Fz′ ]x=x0 = 0, [Fy′ + φ′yFz′ ]x=x0 = 0,

[F − y′Fy′ + (ψ′x − z′)Fz′ ]x=x1 = 0, [Fy′ + ψ′yFz′ ]x=x1 = 0.
(0.7)

In the present problem

F=
√

1 + y′2 + z′2, φ(x, y)=
√

4− x2 − y2, ψ(x, y) = 3
√

1− (x2/25)− (y2/16).

The extremal of the given functional (0.6) are the solution of Euler’s equations:

Fy −
d

dx
F ′y = 0, Fz −

d

dx
F ′z = 0, (0.8)

given by

y = A1x+B1, z = A2x+B2, (0.9)

where A1, B1, A2 and B2 are arbitrary constants. Thus the extremal is a line

determined by (0.9). Now, it can be seen that the form of the functional (0.6)

is such that the transversality conditions reduce to orthogonality conditions (see

Example-1 on page 76 of Elsgolc, L. E., Calculus of Variations). Thus the line

represented by (0.10) must be orthogonal to the sphere as well as to the ellipsoid.

Any line orthogonal to the sphere must be diameter of the sphere. Hence, let us

take the straight line represented by (0.9) as

(x− 0)/a = (y − 0)/b = (z − 0)/c, (0.10)

where < a, b, c > are the direction ratios of the line. If this line is extremal then it

must pass through the point (x0, y0, z0) as well as through the point (x1, y1, z1).

Thus we have
x0/a = y0/b = z0/c, and x1/a = y1/b = z1/c. (0.11)

This line is already orthogonal to the sphere as it is passing through the center

of the sphere. At (x1, y1, z1), the line must be orthogonal to the ellipsoid. The

equation of tangent plane to the ellipsoid at the point (x1, y1, z1) is given by

xx1/25 + yy1/16 + zz1/9 = 1. (0.12)

The direction ratios of the normal to this plane must match with those of the

extremal (0.10). Therefore we have

x1/25a = y1/16b = z1/9c. (0.13)

This is possible in the following three cases:

(i) Case - I: a = b = 0 and c 6= 0, (ii) Case-II: b = c = 0, a 6= 0 and (iii) Case - III:

c = a = 0, and b 6= 0.

In (i), the extremal is z−axis and the point A (x0, y0, z0) is (0, 0,±2) and point B

(x1, y1, z1) is (0, 0,±3).

In (ii), the extremal is x−axis and the point A (x0, y0, z0) is (±2, 0, 0) and point

B (x1, y1, z1) is (±5, 0, 0).

In (iii), the extremal is y−axis and the point A (x0, y0, z0) is (0,±2, 0) and point

B (x1, y1, z1) is (0,±4, 0).

The distance between the sphere and the ellipsoid is minimum when extremal
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is z−axis and minimum distance is 1, while the distance is maximum when the

extremal is x−axis and it is equal to 3.

Solution by the Proposer B. Sury: MS-2017, Nos. 3-4: Problem 8: For

every positive integer n > 3, prove that there is a prime factor of 2n + 1 which

does not divide 2m + 1 for any m < n.

Solution. Now, xn − 1 =
∏n
k=1(x− e2iπk/n) =

∏
d|n Φd(x), where the d-th cyclo-

tomic polynomial Φd(x) =
∏

(r,d)=1(x − e2iπr/d) is an irreducible integer polyno-

mial. For any integer a and for any natural number n, one has

an − 1 =
∏
d|n

Φd(a)

which is a product of integers. Thus, if p is any prime dividing an − 1 for some a

then p divides Φd(a) for some d|n.

Now, we make the following interesting assertion:

Let n > 2. If p is a prime dividing Φn(a) for some integer a > 1 then p divides

an−1, and in this case n is the smallest natural number such that p divides an−1

unless p|n in which case the smallest number is of the form n/pi for some i ≥ 1.

In the latter case, p is the largest prime dividing n. Finally, given a > 1 and

n > 2, if there are no primes p for which a has order n mod p, then Φn(a) is a

prime.

We apply the above result to prove what the problem asserts.

For each n > 3, if we find a prime p such that the order of 2 mod p is 2n, then

from (22n − 1) = (2n − 1)(2n + 1), we would have p|(2n + 1) because p does not

divide 2n − 1. Also, if p divided 2m + 1 for some m < n, then it would divide

22m − 1 which would contradict the fact that the order of 2 mod p is 2n.

In order to get a prime p such that 2 has order 2n mod p, we need to get a prime

p dividing Φ2n(2) and not dividing 2n. If there is no such prime, then as we saw

above, we must have that Φ2n(2) = p is the largest prime dividing n, and that p

is odd. Write 2n = pid with d dividing p− 1. Now

|Φ2n(2)| = |Φd(2p
i

)|
|Φd(2pi−1)|

=

∏φ(d)
r=1 |bp − ζr|∏φ(d)
r=1 |b− ζr|

>

(
bp − 1

b+ 1

)φ(d)
,

where b = 2p
i−1

and ζr are the φ(d) primitive d-th roots of unity (the roots of

Φd(x)). As bp − 1 ≥ bp−2(b2 − 1), the right side above is > b(p−2)φ(d)(b − 1)φ(d).

As b ≥ 2, this last expression is at least 2p−2. Therefore, we have

p = Φ2n(2) > 2p−2

which is possible only if p = 3. In that case we must also have 2n = 6 which we

rule out. In other words, when n > 3, then there does exist a prime divisor p

of Φ2n(2) which does not divide n; the above discussion then shows that n is the

smallest natural number for which p divides 2n + 1. This complets the solution.

Let us now prove the above assertion that we used.

Note that p divides an− 1 since Φn(a) divides an− 1. Also, if p divides am− 1 for
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some m < n as well, then p divides a(m,n) − 1 where (m,n) is the GCD of m and

n. Therefore, if n were not the smallest for which p divides an− 1, we would have

a factor d of n such that d < n and p|(ad − 1). As d < n and d|n, there is some

prime q such that qd|n. Thus, d divides n/q and so p divides an/q − 1. Writing

b = an/q, we see that b is congruent to 1 modulo p. So, we have
an − 1

an/q − 1
=
bq − 1

b− 1
= 1 + b+ b2 + · · ·+ bq−1 ≡ q

modulo p. On the other hand, the left hand side is a multiple of Φn(a) which is a

multiple of p. Thus, we must have that p = q and that it divides n.

This also shows that an/q − 1 is not a multiple of p for any prime divisor q 6= p of

n. Thus, the order of a mod p is either n or of the form n/pi for some i ≥ 1.

When the order of a mod p is < n, we have seen that it is of the form n/pi. Thus,

n/pi divides p − 1 by Fermat’s little theorem, which means every other prime

divisor of n is < p. This proves all the assertions excepting the last statement.

To see that the last statement also holds true, consider n > 2, a > 1 and a

prime divisor p of Φn(a). Under the hypothesis that there are no primes modulo

which a has order n, we have seen that p is the largest prime dividing n and that

Φn(a) = pk for some k ≥ 1. We assert that k = 1. Observe that Φn(a) divides
an − 1

an/p − 1
= 1 + an/p + a2n/p + · · ·+ a(p−1)n/p.

As an/p = 1 + pb for some b, the right hand side above is

1 + (1 + pb) + · · ·+ (1 + pb)(p−1) = p+ p(b+ 2b+ · · ·+ (p− 1)b) + p2c = p+ p2d

for some c, d if p > 2. Therefore, p2 does not divide Φn(a); hence Φn(a) = p.

When p = 2, the argument is again easy remembering that n > 2 is a power of 2

as p is the largest prime divisor of n. This proves the assertion completely.

Solution by the Proposer B. Sury: MS-2017, Nos. 3-4: Problem 11:

Consider a groupG generated by {x1, x2, x3, · · · } and relations x2x1x
−1
2 = x3x2x

−1
3

= x4x3x
−1
4 = · · · · · · Prove that G is not finitely generated.

Note. The source of this problem was the American Manthematical Monthly, but

we are unable to pinpoint the concerned volume for problem or solution.

Solution. The idea is to show that if G were finitely generated, it would be

free with both {x1, x2} and {x2, x3} as bases. But then the surjective homo-

morphism π : G → Z given by π(x2) = 0, π(x3) = 1 satisfies π(x1) = 0 as

x1 = x−12 (x3x2x
−1
3 )x2. As G =< x1, x2 >, this is a contradiction of surjectivity

of π. We give the proof (of finite generation implying freeness) via three simpler

observations.

Observation 1. For each r, xr and xr+1 do not commute in G.

Indeed, the map xr 7→ (1, 2), xr+1 7→ (1, 3) gives an onto homomorphism onto S3

(the defining relations of G hold in S3 clearly) and (1, 2), (1, 3) do not commute.

Observation 2. For each n, G has generators xr and relations xr+1xrx
−1
r+1 =

xr+2xr+1x
−1
r+2 for r ≥ n.
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Indeed, first note that x1 = x−12 (x3x2x
−1
3 )x2 and the other relations do not in-

volve x1 which means that G is generated by xr and the relations xr+1xrx
−1
r+1 =

xr+2xr+1x
−1
r+2 for r ≥ 2. Proceeding in this manner inductively, the assertion fol-

lows for any n, and it follows that θn : xr 7→ xr+n for all r gives an automorphism

of G.

Observation 3. If G is finitely generated, then it is free of rank 2 with basis

{x1, x2} as well as the basis {x2, x3}.
SupposeG is generated by xr for r ≤ n. As done above, we may write xr in terms of

xr+1, xr+2 for r ≤ n−2 and deduce that G is generated by xn−1, xn. As θn−2 is an

automorphism, it follows that G is generated by θ−1n−2(xn−1) = x1, θ
−1
n−2(xn) = x2

as well as by φ1(x1) = x2, φ2(x2) = x3.

Now, consider the abstract group F generated by x1, · · · , xn and with defining

relations x2x1x
−1
2 = x3x2x

−1
3 = · · · = xn−1xn−2x

−1
n−1 = xnxn−1x

−1
n .

The above argument shows that F is generated by xn−1, xn and has no relations;

so, F is freely generated by xn−1, xn. As our group G is generated by x1, x2 which

do not commute, G is a free subgroup of rank 2 on the basis {x1, x2}. As φ1 is

an automorphism taking this basis to the set {x2, x3}, G is free also on {x2, x3}.
Thus, we obtain a contradiction.

———–



Member's copy - not for circulation 

162



Member's copy - not for circulation 



Member's copy - not for circulation 

FORM IV
(See Rule 8)

1. Place of Publication: PUNE

2. Periodicity of publica-
tion:

QUARTERLY

3. Printer’s Name: DINESH BARVE
Nationality: INDIAN
Address: PARASURAM PROCESS

38/8, ERANDWANE
PUNE-411 004, INDIA

4. Publisher’s Name: N. K. THAKARE
Nationality: INDIAN
Address: GENERAL SECRETARY

THE INDIAN MATHEMATICAL SOCIETY
c/o:CENTER FOR ADVANCED STUDY IN
MATHEMATICS, S. P. PUNE UNIVERSITY
PUNE-400 007, MAHARASHTRA, INDIA

5. Editor’s Name: J. R. PATADIA
Nationality: INDIAN
Address: (DEPARTMENT OF MATHEMATICS,

THE M. S.UNIVERSITY OF BARODA)
5 , ARJUN PARK, NEAR PATEL COLONY
BEHIND DINESH MILL, SHIVANAND MARG
VADODARA - 390 007, GUJARAT, INDIA

6. Names and addresses of THE INDIAN MATHEMATICAL SOCIETY
individuals who own the
newspaper and partners
or shareholders holding
more than 1% of the
total capital:

I, N. K. Thakare, hereby declare that the particulars given above are true to the
best of my knowledge and belief.

N. K. THAKARE
Dated: 01st November 2018 Signature of the Publisher

Published by Prof. N. K. Thakare for the Indian Mathematical Society, type set by
J. R. Patadia at 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill, Shivanand
Marg, Vadodara - 390 007 and printed by Dinesh Barve at Parashuram Process,
Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon
Dhayari, Pune 411 041 (India). Printed in India



Member's copy - not for circulation 

The Mathematics Student ISSN: 0025-5742
Vol. 87, Nos. 3-4, July-December, (2018)

EDITORIAL BOARD
J. R. Patadia (Editor-in-Chief)

5, Arjun Park, Near Patel Colony, Behind Dinesh Mill
Shivanand Marg, Vadodara-390007, Gujarat, India

E-mail : msindianmathsociety@gmail.com

Bruce C. Berndt George E. Andrews
Dept. of Mathematics, University Dept. of Mathematics, The Pennsylvania
of Illinois 1409 West Green St. State University, University Park
Urbana, IL 61801, USA PA 16802, USA
E −mail : berndt@math.uiuc.edu E −mail : gea1@psu.edu

M. Ram Murty N. K. Thakare

Queens Research Chair and Head C/o :
Dept. of Mathematics and Statistics Center for Advanced Study
Jeffery Hall, Queens University in Mathematics, Savitribai Phule
Kingston, Ontario, K7L3N6, Canada Pune University, Pune− 411007, India
E −mail : murty@mast.queensu.ca E −mail : nkthakare@gmail.com

Satya Deo Gadadhar Misra
Harish− Chandra Research Institute Dept. of Mathematics
Chhatnag Road, Jhusi Indian Institute of Science
Allahabad− 211019, India Bangalore− 560012, India
E −mail : sdeo94@gmail.com E −mail : gm@math.iisc.ernet.in

B. Sury A. S. Vasudeva Murthy
Theoretical Stat. and Math. Unit TIFR Centre for Applicable Mathematics
Indian Statistical Institute P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560059, India Chikkabommasandra,Bangalore− 560065, India
E −mail : surybang@gmail.com E −mail : vasu@math.tifrbng.res.in

S. K. Tomar Krishnaswami Alladi
Dept. of Mathematics, Panjab University Dept. of Mathematics, University of
Sector − 4, Chandigarh− 160014, India F lorida, Gainesville, FL32611, USA
E −mail : sktomar@pu.ac.in E −mail : alladik@ufl.edu

Subhash J. Bhatt L. Sunil Chandran
Dept. of Mathematics Dept. of Computer Science&Automation
Sardar Patel University Indian Institute of Science
V. V. Nagar − 388120, India Bangalore− 560012, India
E −mail : subhashbhaib@gmail.com E −mail : sunil.cl@gmail.com

M. M. Shikare T. S. S. R. K. Rao
Center for Advanced Studyin Theoretical Stat. and Math. Unit
Mathematics, Savitribai Phule Pune Indian Statistical Institute
University, Pune− 411007, India Bangalore− 560059, India
E −mail : mms@math.unipune.ac.in E −mail : tss@isibang.ac.in

Kaushal Verma C. S. Aravinda
Dept. of Mathematics TIFR Centre for Applicable Mathematics
Indian Institute of Science P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560012, India Chikkabommasandra,Bangalore− 560065, India
E −mail : kverma@math.iisc.ernet.in E −mail : aravinda@math.tifrbng.res.in

Indranil Biswas Timothy Huber
School of Mathematics, Tata Institute School of Mathematics and statistical Sciences
of Fundamental Research, Homi Bhabha University of Texas Rio Grande V alley, 1201
Rd., Mumbai− 400005, India West Univ. Avenue,Edinburg, TX78539 USA
E −mail : indranil29@gmail.com E −mail : timothy.huber@utrgv.edu

Clare D′Cruz Atul Dixit

Dept. of Mathematics, CMI, H1, SIPCOT AB 5/340, Dept. of Mathematics
IT Park, Padur P.O., Siruseri IIT Gandhinagar, Palaj, Gandhinagar−
Kelambakkam− 603103, Tamilnadu, India 382355, Gujarat, India
E −mail : clare@cmi.ac.in E −mail : adixit@iitg.ac.in



Member's copy - not for circulation 

THE INDIAN MATHEMATICAL SOCIETY
Founded in 1907

Registered Office: Center for Advanced Study in Mathematics
Savitribai Phule Pune University, Pune - 411 007

COUNCIL FOR THE SESSION 2018-2019

PRESIDENT: Sudhir Ghorpade, Department of Mathematics,
& I. I. T. Bombay-400 056, Powai, Mumbai (MS), India

IMMEDIATE PAST PRESIDENT: Manjul Gupta, Professor, Department of Mathe-
matics

& Statistics, I. I. T. Kanpur-208 016, Kanpur (UP), India

GENERAL SECRETARY: N. K. Thakare, C/o. Center for Advanced Study in
Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

ACADEMIC SECRETARY: Peeush Chandra, Professor (Retired), Department of
Mathematics & Statistics, I. I. T. Kanpur-208 016, Kanpur (UP), India

ADMINISTRATIVE SECRETARY: M. M. Shikare, Center for Advanced Study in
Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

TREASURER: S. K. Nimbhorkar, Dept. of Mathematics, Dr. Babasaheb Ambedkar
Marathwada University, Aurangabad-431 004, Maharashtra, India

EDITOR: J. Indian Math. Society: Satya Deo, Harish-Chandra Research
Institute, Chhatnag Road, Jhusi, Allahabad-211 019, UP, India

EDITOR: The Math. Student: J. R. Patadia, (Dept. of Mathematics, The M. S.
University of Baroda), 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill
Shivananda Marg, Vadodara-390 007, Gujarat, India

LIBRARIAN: Sushma Agrawal, Director, Ramanujan Inst. for Advanced Study
in Mathematics, University of Madras, Chennai-600 005, Tamil Nadu, India

OTHER MEMBERS OF THE COUNCIL

S. P. Tiwari: Dept. of Applied Mathematics, I. S. M. , Dhanbad - 226 007, Jharkhand, India

Veermani, P.: Dept. of Mathematics, I. I. T. Madras, Chennai-600 036, TN, India

G. P. Singh: Dept. of Mathematics, V.N.I.T., Nagpur-440 010, Maharashtra, India

S. S. Khare: 521, Meerapur, Allahabad-211003, Uttar Pradesh, India

P. Rajasekhar Reddy: Sri Venkateswara University, Tirupati-517 502, A.P., India

Asma Ali: Dept. of Mathematics, Aligarh Muslim University, Aligarh-200 202, UP, India

G. P. Rajasekhar: Dept. of Maths., IIT Kharagpur. Kharagpur-700 019, WB, India

Sanjib Kumar Datta: Dept. of Mathematics, Univ. of Kalyani, Kalyani-741 235, WB, India

Back volumes of our periodicals, except for a few numbers out of stock, are available.

Edited by J. R. Patadia and published by N. K. Thakare
for the Indian Mathematical Society.

Type set by J. R. Patadia at 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill,
Shivanand Marg, Vadodara-390 007 and printed by Dinesh Barve at Parashuram
Process, Shed No. 1246/3, S. No.129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon
Dhayari, Pune – 411 041, Maharashtra, India. Printed in India

Copyright c©The Indian Mathematical Society, 2018


	01-Front cvrs-ok-27-10-18
	02-Frnt pgs-ii-ok-27-10-18
	03-Frnt pgs iii-vi-cntnts-ok-27-10-18
	04-Amri Text-prfs-aprvd-14-05-18
	05-HKMukerjee-prfs-aprvd-16-08-18
	06-Atul text-prfs-aprvd-27-08-18
	07-gupta-mishra-prfs-aprvd-09-08-18
	08-Rakesh prfs-aprvd-24-10-18
	09-Asghar- prfs-aprvd-24-06-18
	10-Gururaja-Subhash-prfs-aprvd-25-8-18
	11-Reshma-Dave-aprvd-01-05-18
	12-Amrik -prfs-aprvd-27-10-18
	13-sarthak-prfs-21-06-18-aprvd
	14-Aritro-prfs-aprvd-24-08-18
	15-Jaitra-prfs-aprvd-21-06-18
	16-Thirupathi-prfs-aprvd-14-10-18
	17-Pr Secn-aprvd-MS-18-3-4-prfs-21-10-18
	18-Form IV-ok-27-10-2018
	19-RearCoverpages-27-10-18



