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Jean Baptiste Joseph Fourier (1768–1830)

“The deep study of nature is the
most fruitful source of mathe-
matical discoveries”



Life of Fourier

Born in Auxerre (Burgundy, France) in 1768
Ninth child of a tailor
Orphaned at age ten.
Trained for priesthood,
participated in the French revolution
was repeatedly arrested, risked the guillotine
taught at the École Polytechnique
accompanied Napoleon to Egypt
occupied important administrative and academic positions in
France
helped write the Description of Egypt



Fourier’s Magnum Opus

Théorie analytique de la chaleur
(The analytical theory of heat)

1822

“Heat, like gravity, penetrates every substance of the
universe, its rays occupy all parts of space. The object of
our work is to set forth the mathematical laws which this
element obeys.”



The heat equation

Temperature v = v(x , t) as a function of space and time is
governed by

∂v

∂t
= const.

∂2v

∂x2



The Fourier transform

The Fourier transform of f (x) is

f̂ (ξ) =

∫
f (x)e−2πixξdx

A function can be recovered from its Fourier transform

ˆ̂f (x) = f (−x)



Formal properties

Derivatives
If g(x) = f ′(x), then

ĝ(ξ) = −2πiξf̂ (ξ)

Products
If g(x) = f1(x)f2(x), then

ĝ(ξ) = (f̂1 ∗ f̂2)(ξ)



Application to the heat equation

The transformed heat equation

∂v̂/∂t = −Kξ2v̂(ξ)

has general solution

v̂(ξ, t) = A(ξ)e−Kξ2t

The inversion formula can be used to recover

v(x , t) = v0 ∗ Gt(x)

where GKt(x) = Ce−Dx2/t , and v0(x) = v(x , 0).



Fourier series

For a nice function f : [0, 1] → C

f (x) =
∑
n∈Z

cne
2πinx ,

where, for each n,

cn =

∫ 1

0
f (x)e−2πinxdx .

Fourier assumed their validity for a “function” f .



Johann Peter Gustav Lejeune Dirichlet (1805-1859)

The modern definition of a function is
due to Dirichlet.
He gave the first rigorous proof of the
convergence of Fourier series, subject to
what are now called Dirichlet’s
conditions.



Fourier transforms and Fourier series

Fourier transform
Associates to a function on R another function on R.

Fourier series
Associates to a function on R/Z a function on Z, and vice versa.



Lev Semenovich Pontryagin (1908-1988)

Lost his eyesight to a stove
explosion at age 14.
His mother read mathematical
books and papers to him.
He developed duality theory for
abelian groups.



Duality theory for abelian groups

Let A be a topological abelian group.
Its Pontryagin dual is the abelian group Â consisting of continuous
characters

χ : A → T

given the topology of uniform convergence on compact sets. Here

T = {z ∈ C∗ : |z | = 1}.



Dual of Z

χ : Z → T is completely determined by the image of 1 ∈ Z.
Therefore,

Ẑ = T .



Dual of T

Given χ : T → T , it lifts to unique χ̃ : R → R:

R
χ̃ //

t 7→e2πit

��

R

t 7→e2πit

��
T χ

// T

for which χ̃(0) = 0.
If χ̃(1) = n, then n ∈ Z and

χ(z) = zn for all z ∈ T .

Therefore T̂ = Z.



Dual of R

Given χ : R → T , it lifts to χ̃ : R → R:

R

t 7→e2πit

��
R

χ̃
??~~~~~~~

χ
// T

If χ̃(1) = ξ, then χ = χξ, where

χξ(t) = e2πitξ

The map ξ 7→ χξ is an isomorphism of R onto R̂.



Dual of a finite group

A character Z/nZ → T is determined by the image of a generator,
which can be any nth root of unity. Therefore Z/nZ is its own
Pontryagin dual.
Every finite abelian group is a product of finite cyclic groups.
Also, the dual of the product of two groups is the product of their
duals.
Therefore every finite abelian group is isomorphic to its dual.



The double dual

There is always a map φ : A → ˆ̂A:

x 7→ (χ 7→ χ(x)).

Theorem (Pontryagin duality theorem)

When A is a locally compact abelian group, φ is an isomorphism of

A onto ˆ̂A.



Examples of dual pairs

A Â

R R
Z T

Z/nZ Z/nZ
Z(p∞) Zp

Qp Qp

finite abelian group finite abelian group
discrete abelian group compact abelian group
compact connected torsion-free discrete

compact totally disconnected torsion discrete



The Fourier transform

Let A be a locally compact abelian group.
For f ∈ L1(A), its Fourier transform is is a function on Â:

f̂ (χ) =

∫
A

f (x)χ(x)dx .



Fourier theory for locally compact abelian groups

1. For every locally compact abelian group A, the Fourier
transform gives rise to an isometry of L2(A) onto L2(Â).

2. If ˆ̂A is identified with A using Pontryagin duality, the Fourier
inversion formula holds:

ˆ̂f (x) = f (−x).



The discrete Fourier transform

For f : Z/nZ → C,

f̂ (k) =
1

n

n−1∑
l=0

f (l)W lk ; W = e2πi/n.

The calculation of each value requires n − 1 additions and n + 1
multiplications,
so the calculation of f̂ requires 2n2 operations.



Cooley-Tukey algorithm (1965)

Suppose n = n1n2.
Write k = n1k1 + k0, l = n2l1 + l0.

f̂ (n1k1 + k0) =

n2−1∑
l0=0

n1−1∑
l1=0

f (n2l1 + l0)W
(n1k1+k0)(n2l1+l0)

=

n2−1∑
l0=0

f1(l0, k0)W
n1k1l0

(the inner sum over l1 depends only on l0 and k0, since
W (n1k1+k+0)n2l1 = W k0n2l1).

f1(l0, k0) =

n1−1∑
l1=0

f (n2l1 + l0)W
n2l1k0+k0l0

The inner array has n elements, each requiring 2nn1 operations.
To calculate the full sum requires an additional 2nn2 operations.
A total of 2n(n1 + n2) operations.



Cooley-Tukey repeated

If n = 2r then the above idea can be used recursively to calculate
the Fourier transform with just

2n(2 + · · ·+ 2) = 4nr = 4n log2 n

operations. Algorithms of this type are called fast Fourier
transforms.



Polynomial multiplication

To multiply polynomials a0 + a1x + · · ·+ anx
n and

b0 + b1x + · · ·+ bmxm naively requires (m + 1)(n + 1)
multiplication and (m + 1)(n + 1)− (m + n + 1) addition
operations. Take N ≥ m + n and let f , g : Z/NZ → C be given by

f (k) = ak , g(l) = bl

(taking 0 for k > n and l > m). The coefficient of x j in the
product is ∑

k+l=j

akbl = f ∗ g(j) =
̂̂
f ĝ(−j)

which, using fast Fourier transform, requires only 12N log2 N + N
operations.



The Poisson summation formula

For f ∈ S(R) (Schwartz class),∑
n∈Z

f (n) =
∑
n∈Z

f̂ (n).

For example, take ft(x) = e−πtx2
.

Then f̂t(x) = 1√
t
f1/t(x).

If we define
Θ(t) =

∑
n∈Z

ft(n),

then the Poisson summation formula gives

Θ(t) =
1√
t
Θ(1/t).



The Gamma function

For Re(s) > 0,

Γ(s) =

∫ ∞

0
ts−1e−tdt

defines a holomorphic function.
For Re(s) > 0 the identity sΓ(s) = Γ(s + 1) holds.
This identity allows us to extend the Gamma function to a
meromorphic function on on C, with with simple poles at
0,−1,−2, . . ..



The Riemann Zeta Function

ζ(s) =
∞∑

n=1

1

ns
, Re(s) > 1.

Analytic continuation and functional equation

The Riemann zeta function function extends to a meromorphic
function on C, with a simple pole at s = 1 (and no other
singularity), and ξ(s) = π−s/2Γ(s/2)ζ(s) satisfies

ξ(s) = ξ(1− s).



The proof

ξ(s) =
∞∑

n=1

∫ ∞

0
π−s/2ts/2e−tn−s dt

t

=
∞∑

n=1

∫ ∞

0

( t

n2π

)s/2

e−t dt

t

=
∞∑

n=1

∫ ∞

0
ts/2e−n2πt dt

t
[t 7→ t

n2π
]

=

∫ ∞

0
ts/2 1

2
(Θ(t)− 1)

dt

t



Write∫ ∞

0
ts/2 1

2
(Θ(t)−1)

dt

t
=

∫ 1

0
ts/2 1

2
(Θ(t)−1)

dt

t
+

∫ ∞

1
ts/2 1

2
(Θ(t)−1)

dt

t

Since t 7→ 1
2(Θ(t)− 1) decreases rapidly as t →∞, the second

integral is an entire function of s.
Substituting t 7→ 1/t,∫ 1

0
ts/2 1

2
(Θ(t)− 1)

dt

t
=

∫ ∞

1
t−s/2 1

2

(
Θ

(
1

t

)
− 1

)
dt

t

=

∫ ∞

1
t−s/2 1

2
(
√

tΘ(t)− 1)
dt

t

=

∫ ∞

1
t−s/2 1

2
(
√

t(Θ(t)− 1) +
√

t − 1)
dt

t
,

which equals the sum of the entire function∫ ∞

1
t(1−s)/2 1

2
(Θ(t)− 1)

dt

t

and
1

2

∫ ∞

1
t(1−s)/2 dt

t
− 1

2

∫ ∞

1
t−s/2 dt

t
=

1

s − 1
− 1

s
.



We have

ξ(s) =

∫ ∞

1
(t

s
2 + t

1−s
2 )

1

2
(Θ(t)− 1)

dt

t
− 1

s
− 1

1− s
.

Using the functional equation and knowing the poles of the
Gamma function, we see that the Riemann zeta function has
zeroes at even negative integers.
These are the so-called trivial zeroes.

Riemann hypothesis

All other zeroes should lie in the set Re(s) = 1
2 .



“If I were to awaken after having slept for a thousand
years, my first question would be: Has the Riemann
hypothesis been proven?”

David Hilbert
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