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Abstract. Let G be a split reductive group over a finite field Fq , F the field

Fq(t) of rational functions in t with coefficients in Fq and A the adèles of
F. We describe the irreducible automorphic representations of G(A) which
have non-zero vectors invariant under Iwahori subgroups at two places and
maximal compact subgroups at all other places in terms of the irreducible

square-integrable representations of an Iwahori-Hecke algebra associated to G
and the Satake isomorphism.

Introduction. Let Fq denote the finite field with q elements. Let G be a split
reductive group over Fq. Fix a Borel subgroup B of G defined over Fq and a
maximal Fq-split torus T contained in B. Let N be the unipotent radical of B.
Consider the global field F = Fq(t) with ring of adèles A. For each valuation v of F
let Fv denote the corresponding completion of F. Let Ov denote the ring of integers
in Fv. Denote by 0 and ∞ the valuations uniformized by t and t−1 respectively.
Set

Kv =

{
pre-image of B(Fq) under G(Ov)→ G(Fq) if v =∞ or 0,
G(Ov) otherwise.

Let K =
∏
vKv. Let

M = L2(G(F)\G(A)/K).
Denote by Hv the convolution algebra of compactly supported complex-valued mea-
sures on G(Fv) that are left and right invariant under Kv. For v = ∞ or 0, Hv

is an Iwahori-Hecke algebra. For all the other v’s, Hv is a spherical Hecke algebra.
Hv has a right action on M given by

(1) m · ωv(x) =
∫
G(Fv)

m(xg−1)dωv(g) for all m ∈M, ωv ∈ Hv.

The convolution algebra of compactly supported measures on G(A) which are left
and right invariant under K is a restricted tensor product of the algebras Hv (see
e.g., [4, Example 2]). Denote this algebra by ⊗vHv. For each irreducible representa-
tion (π, V ) of ⊗vHv occurring discretely in M there exist irreducible representations
(πv, Vv) of Hv and vectors vv ∈ Vv for each v such that (π, V ) is a restricted tensor
product of the (πv, Vv)’s with respect to {vv} in the sense of [4]. The isomorphism
classes of the factors (πv, Vv) are completely determined by the isomorphism class
of V . The representation πv is called the local constituent of π at v.

The main theorem (Theorem 10) of this article describes the local constituents
of the irreducible representations of ⊗vHv that occur in the discrete part of M .
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For each (π, V ) occurring discretely in M the representations (πv, Vv) are explicitly
described in terms of the irreducible square-integrable representations of an Iwahori-
Hecke algebra for v =∞, 0 in [12]. In this article the local constituents of (π, V ) for
the remaining v are obtained by showing first that a function in M is determined
by its constant term along N , and then showing that the constant terms lie in
a representation of ⊗vHv where the eigencharacter for the center of H∞ of an
eigenvector for the action of the center of ⊗vHv determines the eigencharacter for
the center of Hv for any other v.

The automorphic representations described here lie in the residual discrete spec-
trum coming from the residues of Eisenstein series associated to unramified auto-
morphic characters of T (this can be deduced from Lemmas 2 and 3). For classical
groups over number fields, such representations have been studied extensively by
Mœglin and Waldspurger in [10] and by Mœglin in [8] and [9]. A more detailed
overview of these articles may be found in the introduction of [12]. The techniques
used in [12] and in this paper use only general results about the structure of split
reductive groups and therefore also provide, for the first time, an opportunity to
understand the residual discrete spectrum for all the exceptional groups.

The constant term along N . Given a function m ∈M , its constant term along
N is the function

mN (x) =
∫
N(F)\N(A)

m(nx)dn for each x ∈ G(A),

where dn is the Haar measure on the compact group N(F)\N(A) normalized to
give N(F)\N(A) total measure one. Clearly mN is a complex-valued function on
T (F)N(A)\G(A)/K and the map m 7→ mN is a homomorphism of ⊗vHv-modules.

The following lemma shows that every irreducible module of ⊗vHv occurring
discretely in M also occurs as a submodule of the ⊗vHv-module M̃ consisting of
all complex valued functions on T (F)N(A)\G(A)/K:

Lemma 2. Let m be a complex-valued function on G(F)\G(A)/K. If mN ≡ 0
then m ≡ 0.

Proof. Let W = NG(Fq)T/T (Fq). Fix a section (which need not be a homomor-
phism of groups) φ : W → NG(Fq)T . It induces a bijection

W → B(Fq)\G(Fq)/B(Fq).

Composing φ with the natural inclusion G(Fq)→ G(Ov) gives a function φv : W →
G(Ov). Let X∗(T ) denote the lattice Hom(Gm, T ) of rational cocharacters of T .
For µ ∈ X∗(T ) and a a unit in a ring A, let aµ denote the element µ(a) ∈ T (A).
The Weyl group W has a natural action on X∗(T ). The semidirect product W̃ =
X∗(T ) oW is known as the extended affine Weyl group of G. Recall the following
theorem [11, Theorem 3.1.1] (see also [13])

Theorem (Birkhoff Decomposition). The map φ̃∞ : W̃ → G(A) defined by

µo w 7→ (t−1)µφ∞(w) ∈ G(F∞) ⊂ G(A)

induces a bijection of sets
W̃→̃G(F)\G(A)/K.
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By abuse of notation we will write w instead of φ̃∞(w) for each w ∈ W̃ . Let tw =
1G(F )φ∞(w)K. These functions form a basis for the space of compactly supported
functions in M . For w,w′ ∈ W̃ , we have

(tw′)N (w) =
∫
N(F)\N(A)

tw′(nw)dn

= measure (N(F)\(N(A) ∩G(F)w′Kw−1))

The group W̃ is endowed with a partial ordering “≤” known as the Bruhat ordering.
Note that N(A) ⊂ G(F)K. Moreover, formula for convolving a basis vector tw with
a generator of the algebra H∞ in [12, §3.c] implies that

G(F)Kw ⊂ tw′≤wG(F)w′K.

Therefore, N(A) ∩ G(F)w′Kw−1 is non-empty only when w′ ≤ w. Moreover,
for each w ∈ W̃ , w−1N(A)w ∩ K has positive measure in w−1N(A)w so that
measure (N(F)\(N(A) ∩ G(F)wKw−1)) > 0. It follows from the above remarks
that if m is a compactly supported function in M such that mN

∼= 0 then m ∼= 0.
Lemma 2 then follows from the fact that the compactly supported functions in M
are dense in M . �

The following lemma is the key to understanding the relationship between the
local constituents at different valuations of the irreducible representations of ⊗vHv

occurring in M̃ :

Lemma 3. For every m ∈ M̃ , t0 ∈
∏
v T (Ov) and g ∈ G(A),

m(t0g) = m(g).

Proof. Let g ∈ G(A). By the Iwasawa decomposition g can be written as tnk0,
where t ∈ T (A), n ∈ N(A) and k0 ∈

∏
v G(Ov). By the Bruhat decomposition, k0

can be written as k0 = n0φ∞(w∞)φ0(w0)k for some n0 ∈
∏
v N(Ov), w∞, w0 ∈ W

and k ∈ K. Hence every double coset in T (F)N(A)\G(A)/K has a representative
of the form tφ∞(w∞)φ0(w0). Therefore it suffices to prove Lemma 3 for g of the
form tφ∞(w∞)φ0(w0).

For t0 ∈
∏
v T (Ov) and m ∈ M̃ ,

m(t0tφ∞(w∞)φ0(w0)) = m(tφ∞(w∞)φ0(w0))

since φ∞(w∞)φ0(w0) normalizes
∏
v T (Ov), which in turn is contained in K. �

Hecke algebras. Recall some basic properties of the Hecke algebras Hv. Let Zv
denote the center of Hv for each v and Rv denote the algebra C[T (Fv)/T (Ov)]. Let
Mv denote the space of complex-valued functions on T (Ov)N(Fv)\G(Fv)/Kv for
each v. Mv is a right Hv-module, where the action of ωv ∈ Hv on m ∈Mv is given
by (1). Mv is also a left Rv-module under the action

(4) rv ·mv(x) =
∫
T (Fv)

mv(t−1x)δ
1
2
B(t)rv(t)dt for rv ∈ Rv and mv ∈Mv.

Proposition 5. For each v there exists an isomorphism

Bv : RWv → Zv

such that mv ·Bv(rv) = rv ·mv for each mv ∈Mv and rv ∈ RWv .
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Proof. Suppose that v is not ∞ or 0. Let dg denote the Haar measure on G(Fv)
which gives Kv volume one. Then for any mv ∈ Mv, ωv = h(g)dg ∈ Hv and
x ∈ T (Fv),

mv · ωv(x) =
∫
G(Fv)

mv(xg−1)h(g)dg
=

∫
B(Fv)

∫
Kv

mv(xb−1k−1)h(kb)drbdk [1, (5)]
=

∫
B(Fv)

mv(xb−1)h(b)drb
=

∫
T (Fv)

∫
N(Fv)

mv(xt−1n−1)h(nt)dndt [1, (2)]
=

∫
T (Fv)

mv(t−1x)
∫
N(Fv)

h(nt)dndt

=
∫
T (Fv)

mv(t−1x)δ
1
2
B(t)

(
δ
− 1

2
B (t)

∫
N(Fv)

h(nt)dn
)
dt

Here drb is the right Haar measure on B normalized so that B(Ov) has total measure
one, and dk (resp. dn, dt) is a Haar measure on Kv (resp. N(Fv), T (Fv)) giving
Kv (resp. N(Ov), T (Ov)) measure one. The map Hv → Rv defined by

ωv 7→
(
t 7→ δ

− 1
2

B (t)
∫
N(Fv)

h(nt)dn

)
is well-known to be an isomorphism onto RWv (it is known as the Satake isomor-
phism [1, (19)]). Thus Rv is commutative, i.e., Zv = Rv. Moreover, by the Iwa-
sawa decomposition, m ∈Mv is completely determined by its restriction to T (Fv).
Therefore, taking Bv to be the inverse of the Satake isomorphism completes the
proof of Proposition 5 for v different from ∞ and 0.

If v is 0 or ∞, then it may be shown that for a dominant µ ∈ X∗(T ) (we say
that µ ∈ X∗(T ) is dominant if πµ∞(N(F∞) ∩K∞)π−µ∞ ⊂ N(F∞) ∩K∞)

1πµv · 1T (Ov)N(Fv)Kv = δ
1
2
B(πµv )1T (Ov)N(Fv)Kv ·Θµ,

where Θµ(g) = 1KvπµvKv (g)dg and dg is the Haar measure on G(Fv) which gives
Kv total measure one. It follows that we may take Bv to be the isomorphism of
the center of Hv onto RWv attributed to Bernstein [7, Theorem 8.1]. �

Conditions on central characters. We now show how Lemma 3 can be used
to show that the eigencharacter for Z∞ of an eigenvector in M̃ determines its
eigencharacters for Zv for all v. The map X∗(T ) → T (Fv)/T (Ov) given by µ 7→
µ(πv), where πv is a uniformizing element for Fv, is independent of the choice of
πv and determines an isomorphism fv : R→ Rv, where R := C[X∗(T )].

Lemma 6. Suppose that m ∈ M̃ is an eigenvector for the action of ⊗vZv with
eigencharacter ψv : Zv → C for each v. Then for any valuation v,

ψv(Bv ◦ fv(r)) = ψ∞(B∞ ◦ f∞(r[deg(v)])) for each r ∈ RW

where, for any integer d, r[d] denotes that element of R = C[X∗(T )] for which
r[d](µ) = r(dµ).

Proof. For each µ ∈ X∗(T ), the elements πdeg(v)µ
∞ and πµv are congruent in T (A)

modulo T (F)
∏
v(T (Ov)). It follows from Lemma 3 that for any m ∈ M̃

m(π−µv x) = m(π− deg(v)µ
∞ x).

Therefore, for any r ∈ RW , we have

fv(r) ·m = f∞(r[deg(v)]) ·m.
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Thus

ψv(Bv ◦ fv(r))m = m · (Bv ◦ fv(r))
= fv(r) ·m
= f∞(r[deg(v)]) ·m
= ψ∞(B∞ ◦ f∞(r[deg(v)])).

�

Let T̂ denote the group of characters X∗(T )→ C×. Then T̂ is a complex torus
which may be viewed as a maximal torus in the Langlands dual group of G. It
is canonically isomorphic to specR. Therefore, T̂ /W is canonically isomorphic to
spec(RW ). For s ∈ T̂ /W , let χsv be the character of Zv defined by

χsv(Bv ◦ fv(r)) = s(r) for each r ∈ RW .

Lemma 6 implies

Proposition 7. Suppose m ∈ M is an eigenvector for the action of Z∞ with
eigencharacter χs∞. Then for each valuation v, it is an eigenvector for the action
of Zv with eigencharacter χs

deg(v)

v .

Local constituents at ∞ and 0. let F denote the field Fq((π)) of Laurent series
in a variable π. Let O denote the ring Fq[[π]] of integers in F . Let I be the Iwahori
subgroup of G(F ) which is the pre-image of B(Fq) under the map G(O)→ G(Fq)
and let H denote the corresponding Iwahori-Hecke algebra. The assignment π 7→ t
(resp. π 7→ t−1) defines an isomorphism F → F0 (resp. F → F∞) and hence an
isomorphism θ0 : H → H0 (resp. θ∞ : H → H∞). Let

N = L2(∆G(F )\(G(F )2)/I2).

Then N is an H ⊗ H module whose discrete part is known by elementary and
standard considerations (see e.g., [12, Proposition 6.1]):

Ndiscrete =
⊕

(π,V )∈Ĥ

(π ⊗ π̃, V ⊗ Ṽ ).

Here Ĥ denotes the set of isomorphism-classes of irreducible square-integrable rep-
resentations of H. Moreover, by [12, Theorem 1.2], there is an isometry of Hilbert
spaces

I : N →M

such that

I(n · (h⊗ h′)) = I(n) · (θ∞ ◦ ι(h)⊗ θ0 ◦ ι ◦ κ(h′)) for h, h′ ∈ H, n ∈ N.

where ι is the Iwahori-Matsumoto involution (introduced at the very end of [5]; or
see [14, §5.3]) and κ is an involution (defined in [12, §5.a]), which when the derived
group of G is adjoint, takes a representation to its contragredient. It follows that
as an H∞ ⊗H0-module

(8) Mdiscrete =
⊕

(π,V )∈Ĥ

(π ◦ ι ◦ θ∞ ⊗ π̃ ◦ κ ◦ ι ◦ θ0, V ⊗ Ṽ ).
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The Iwahori-Matsumoto involution. The following theorem (which is inter-
esting in its own right) is the final ingredient in the proof of our main theorem
(Theorem 10):

Theorem 9. Let (π, V ) ∈ Ĥ. The central character of (π, V ) equals the central
character of (π ◦ ι, V ).

Proof. As in the paragraph preceding Proposition 7, the characters of the center of
H are parameterized by points in T̂ /W . Let s ∈ T̂ /W be the central character of H
on (π, V ). Let (r(π), U) denote the representation of R that is obtained by taking
the T (O)-invariants of the normalized Jacquet module (see [14, §2.3] for the correct
normalization) of the irreducible representation of G(F) whose I invariants form
the irreducible representation (π, V ) of H. By [3, Proposition 2.4] the canonical
projection V → U is an isomorphism. Moreover, it follows easily from the definition
of Bv, [3, Proposition 2.5] and [2, Lemma 1.5.1] that the restrictions to RW of the
weights of r(π) is also s. By [14, Proposition 13], weights of r(π) and r(π ◦ ι) on
U differ by conjugation by the longest element in W . Therefore, their restrictions
to RW are the same. This means that the central character of (π, V ) equals that
of (π ◦ ι, V ). �

It is erroneously stated in [12] that the Iwahori-Matsumoto involution takes s
to s−1. In view of Theorem 9, s−1 should be replaced by s in the statements of
Theorems 1.3 and 1.5 in [12].

The discrete spectrum. For (π, V ) ∈ Ĥ, let s(π) ∈ T̂ /W correspond to the
central character of π on V . Let χsv be as in Proposition 7.

Theorem 10 (Main Theorem). As an ⊗vHv-module,

(11) Mdiscrete =
⊕

(π,V )∈Ĥ

(π ◦ ι ◦ θ∞ ⊗ π̃ ◦ κ ◦ ι ◦ θ0 ⊗ (⊗v 6=0,∞χ
(s(π)deg(v))
v ), V ⊗ Ṽ ).

Proof. Theorem 10 is a direct consequence of Proposition 7, (8) and Theorem 9. �
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