MIDSEMESTER EXAM

FUNCTIONAL ANALYSIS

(1) Prove that the real line, equipped with the distance

 $d(x, y) = |\arctan x - \arctan y|,$

is not complete.

- (2) If X is a Hilbert space, show that dim $X < \infty$ if and only if there exists a compact set in X which contains an open neighborhood of 0.
- (3) We say that a sequence of distributions T_n converges to a distribution T if $\lim_{n\to\infty} T_n(\phi) \to T(\phi)$ for every $\phi \in C_0^{\infty}(\Omega)$. Show that if T_n converges to T, then $\partial T_n/\partial x_j$ converges to $\partial T/\partial x_j$ for each j.
- (4) Suppose that the topology of a locally convex topological vector space is given by a countable sufficient family of seminorms. Show that there exist continuous seminorms {p_n(x)} on X satisfying

 $p_1(x) \le p_2(x) \le p_3(x) \le \cdots$ for every $x \in X$

such that any neighborhood of 0 in X contains a subset of the form

$$\{\mathbf{x} \mid \mathbf{p}_{\mathbf{n}}(\mathbf{x}) < \mathbf{\varepsilon}\}$$

for some $n \in \mathbf{N}$ and some $\varepsilon > 0$.

(5) Suppose X and Y are Banach spaces and \mathcal{A} is a collection of bounded operators $X \to Y$. Suppose that for all $x \in X$, { $||Tx|| : T \in \mathcal{A}$ } is bounded. Show that { $||T|| : T \in \mathcal{A}$ } is bounded. Hint: Let $\mathcal{A}_N = \{x \in X : ||Tx|| \le N \text{ for all } T \in \mathcal{A}\}$. Then use the Baire category theorem.

Date: 21st February 2008.