HOMEWORK IX

FUNCTIONAL ANALYSIS

(1) Use the Poisson summation formula to prove the theta relation:

$$\sum_{-\infty}^{\infty} e^{-n^2 \pi z} = z^{-\frac{1}{2}} \sum_{-\infty}^{\infty} e^{-k^2 \pi/z}.$$

- (2) Evaluate $\sum_{1}^{\infty} (n^2 + 1)^{-1}$ using the Poisson summation formula.
- (3) Let $\hat{\mathbf{R}}$ denote the set of all continuous functions $\chi : \mathbf{R} \to \mathbf{C}$ such that $|\chi(x)| = 1$ for all $x \in \mathbf{R}$, and $\chi(x+y) = \chi(x)\chi(y)$. Note that for each $\xi \in \mathbf{R}$, if $\chi_{\xi}(x) = e^{ix\xi}$ then $\chi_{\xi} \in \hat{\mathbf{R}}$. Show that $\xi \mapsto \chi_{\xi}$ is a bijection $\mathbf{R} \to \hat{\mathbf{R}}$. Furthermore, $\xi_n \to \xi$ if and only if χ_{ξ_n} converges to χ_{ξ} uniformly on all compact sets.
- (4) Prove that $C_0^{\infty}(\mathbf{R}^n)$ is dense in $\mathcal{O}_M(\mathbf{R}^n)$.
- (5) For a tempered distribution T, show that $\widehat{\frac{\partial T}{\partial x_j}} = ix_j \hat{T}$, and that $\widehat{ix_j T} = -\frac{\partial \hat{T}}{\partial x_j}$.
- (6) Suppose $\phi \in \mathfrak{D}(\mathbf{R})$ with support contained in [-a, a]. Show that

$$\hat{\phi}(\xi) = \int \phi(x) e^{-i\xi x} dx; \quad \xi \in \mathbf{C}$$

is an entire (holomorphic) function, and that for every $q \ge 0$, there exists a constant C_q (independent of ξ) such that

$$|\xi^q \hat{\phi}(\xi)| \le C_q e^{a|\tau|}, \text{ for all } \xi = \sigma + i\tau \in \mathbf{C}; \ \sigma, \tau \in \mathbf{R}.$$

Hint: For q = 0, the proof is relatively straightforward. For higher q, work with the Fourier transform of the qth derivative of ϕ^1 .

- (7) Show that whenever $T \in \mathcal{S}(\mathbf{R}^n)'$ is homogeneous of degree m, \hat{T} is homogeneous of degree -n m.
- (8) Show that whenever $T \in \mathcal{S}(\mathbf{R}^2)'$ is invariant under the transformation $(x, y) \mapsto (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta)$ for all $\theta \in [0, 2\pi]$, then so is \hat{T} .
- (9) Note that the Fourier transform of a function in L¹(**R**ⁿ) is always a well-defined function. For f ∈ L¹(**R**ⁿ), let V_f be the closed subspace of L¹(**R**ⁿ) spanned by all the translates of f (i.e., functions of the form f_y(x) = f(x y)). Suppose that f̂(ξ₀) = 0 for some ξ₀ ∈ **R**ⁿ, show that ĥ(ξ₀) = 0 for all h ∈ V_f. Deduce that if V_f = L¹(**R**ⁿ), then f̂ never vanishes².
 10) If f ⊂ L²(**R**ⁿ) show that
- (10) If $f \in L^2(\mathbf{R}^n)$, show that

$$\hat{f}(\xi) = \lim_{R \to \infty} \int_{\|x\| \le R} f(x) e^{-i(x,\xi)} dx,$$

where the limit is taken in $L^2(\mathbf{R}^n)$.

Date: due on Monday, March 24, 2008 (before class).

¹The converse of this result is the Paley-Wiener theorem: if ψ is an entire function such that for every $q \ge 0$, there exists C_q such that $|\xi^q \psi(\xi)| \le C_q e^{a|\tau|}$, then ψ is the Fourier transform of a smooth function which vanishes for |x| > a.

 $^{^{2}}$ The converse of this result is the Tauberian theorem of Norbert Wiener.