HOMEWORK VI

FUNCTIONAL ANALYSIS

(1) Show that there does not exist any function $f \in L^1_{\text{loc}}(\mathbf{R})$ such that for every $\phi \in \mathfrak{D}(\mathbf{R})$,

$$\int_{\mathbf{R}} f(x)\phi(x)dx = \phi(0).$$

- (2) Let Ω be an open domain in \mathbb{R}^n , f_1 and f_2 be locally integrable functions on Ω . Show that $T_{f_1} = T_{f_2}$ if and only if $f_1 = f_2$ almost everywhere.
- (3) For an arbitrary multi-index s, what are the distributional higher derivatives $D^s \delta_0$?
- (4) Find all the distributions T on \mathbf{R} for which the distributional derivative $\frac{d}{dx}T = 0$ [Hint: Firstly, note that a compactly supported smooth function $\phi(x)$ is the derivative of a compactly supported smooth function if and only if $\int \phi(x)dx = 0$. Fix $\phi_1(x) \in C_0^{\infty}(\mathbf{R})$ such that $\int \phi_1(x)dx = 1$. If $\phi(x) \in C_0^{\infty}(\mathbf{R})$, then we may write $\phi(x) = \phi_1(x) \int \phi(x)dx + \phi_0(x)$, for some $\phi_0 \in C_0^{\infty}(\mathbf{R})$ such that $\int \phi_0(x)dx = 0$.]
- (5) Let $f(x) = f(x_1, \ldots, x_n)$ be a continuously differentiable function on a closed bounded domain Ω with a smooth boundary S. Define f to be zero outside Ω . Prove Green's theorem:

$$(\Delta T_f)(\phi) = T_{\Delta f}(\phi) + \int_S \frac{\partial f}{\partial \nu} \phi(x) ds - \int_S f(x) \frac{\partial \phi}{\partial \nu} ds,$$

where $\Delta = \sum_j \partial/\partial x_j$ and $\partial/\partial \nu = \sum_j (\partial/\partial x_j) \cos(x_j, \nu)$. Here (x_j, ν) denotes the angle between the inner normal to S and the *j*th coordinate vector.

Date: due on Monday, February 18, 2008 (before class).