Automorphism Orbits of Subgroups in Finite Abelian Groups

Amritanshu Prasad (Collaborators: C P Anilkumar, Wesley Calvert, Kunal Dutta)

The Institute of Mathematical Sciences, Chennai

July 12, 2015

My Institute

My collaborators

Every abelian group of order p^n is of the form:

$$A = \frac{\mathbf{Z}}{\rho^{\lambda_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{\rho^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{\rho^{\lambda_l}\mathbf{Z}},$$

for a unique sequence $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l$ of integers such that $\lambda_1 + \cdots + \lambda_l = n$.

Every abelian group of order p^n is of the form:

$$A = \frac{\mathbf{Z}}{\rho^{\lambda_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{\rho^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{\rho^{\lambda_l}\mathbf{Z}},$$

for a unique sequence $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l$ of integers such that $\lambda_1 + \cdots + \lambda_l = n$.

$$\Lambda(n) = \text{ Set of all partitions of } n$$

Every abelian group of order p^n is of the form:

$$A = \frac{\mathbf{Z}}{\rho^{\lambda_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{\rho^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{\rho^{\lambda_l}\mathbf{Z}},$$

for a unique sequence $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l$ of integers such that $\lambda_1 + \cdots + \lambda_l = n$.

$$\Lambda(n) = \text{ Set of all partitions of } n$$

Abelian groups of order $p^n \leftrightarrow \Lambda(n)$.

Suppose

$$A = rac{\mathbf{Z}}{p^{\lambda_1}\mathbf{Z}} \oplus rac{\mathbf{Z}}{p^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots rac{\mathbf{Z}}{p^{\lambda_l}\mathbf{Z}},$$

Suppose

$$A = \frac{\mathbf{Z}}{p^{\lambda_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{p^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{p^{\lambda_l}\mathbf{Z}},$$

and suppose B is a subgroup of A.

Suppose

$$A = rac{\mathbf{Z}}{p^{\lambda_1}\mathbf{Z}} \oplus rac{\mathbf{Z}}{p^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots rac{\mathbf{Z}}{p^{\lambda_l}\mathbf{Z}},$$

and suppose B is a subgroup of A. If

$$B = \frac{\mathbf{Z}}{p^{\mu_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{p^{\mu_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{p^{\mu_l}\mathbf{Z}},$$

Suppose

$$A = \frac{\mathbf{Z}}{\rho^{\lambda_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{\rho^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{\rho^{\lambda_l}\mathbf{Z}},$$

and suppose B is a subgroup of A.

lf

$$B = \frac{\mathbf{Z}}{p^{\mu_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{p^{\mu_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{p^{\mu_l}\mathbf{Z}},$$

Then:

$$\mu_1 \leq \lambda_1, \mu_2 \leq \lambda_2, \ldots, \mu_l \leq \lambda_l.$$

Suppose

$$A = rac{\mathbf{Z}}{
ho^{\lambda_1}\mathbf{Z}} \oplus rac{\mathbf{Z}}{
ho^{\lambda_2}\mathbf{Z}} \oplus \cdots \oplus \cdots rac{\mathbf{Z}}{
ho^{\lambda_l}\mathbf{Z}},$$

and suppose B is a subgroup of A.

lf

$$B = \frac{\mathbf{Z}}{p^{\mu_1}\mathbf{Z}} \oplus \frac{\mathbf{Z}}{p^{\mu_2}\mathbf{Z}} \oplus \cdots \oplus \cdots \frac{\mathbf{Z}}{p^{\mu_l}\mathbf{Z}},$$

Then:

$$\mu_1 \leq \lambda_1, \mu_2 \leq \lambda_2, \ldots, \mu_l \leq \lambda_l.$$

If the above inequalities hold, we write:

$$\mu \subset \lambda$$

"containment order" on partitions

$$\frac{\mathsf{Z}}{\rho^3 \mathsf{Z}} \oplus \frac{\mathsf{Z}}{\rho \mathsf{Z}}$$

is of type $\lambda = (3,1)$.

$$\frac{\mathsf{Z}}{p^3\mathsf{Z}}\oplus\frac{\mathsf{Z}}{p\mathsf{Z}}$$

is of type $\lambda = (3,1)$. The possible types for its subgroups are:

Consider
$$\lambda \in \Lambda(n)$$
:

$$\lambda = (1^n) = (1, \dots, 1) \ n \text{ times.}$$

Consider $\lambda \in \Lambda(n)$:

$$\lambda = (1^n) = (1, \dots, 1) \ n \text{ times.}$$

A group of type λ is nothing but the $\mathbf{Z}/p\mathbf{Z}$ -vector space

$$(\mathbf{Z}/p\mathbf{Z})^n$$
.

Consider $\lambda \in \Lambda(n)$:

$$\lambda = (1^n) = (1, \dots, 1) \ n \text{ times.}$$

A group of type λ is nothing but the $\mathbf{Z}/p\mathbf{Z}$ -vector space

$$(\mathbf{Z}/p\mathbf{Z})^n$$
.

Its subgroups are of type (1^k) for $0 \le k \le n$.

Counting subgroups

Combinatorial Problem

Given $\mu \subset \lambda$ (and p), count the number of subgroups of type μ in a group of type λ .

Counting subgroups

Combinatorial Problem

Given $\mu \subset \lambda$ (and p), count the number of subgroups of type μ in a group of type λ .

We denote this number by

$$\binom{\lambda}{\mu}_p$$

Note: $D(\pi)$ is the descent set of π .

$$\binom{(5,4,3,2,1)}{(3,2,1)}_p = p^{12} + 3p^{11} + 6p^{10} + 7p^9 + 6p^8 + 3p^7 + p^6$$

$$\binom{(5,4,3,2,1)}{(3,2,1)}_p = p^{12} + 3p^{11} + 6p^{10} + 7p^9 + 6p^8 + 3p^7 + p^6$$

In general

- $\binom{\lambda}{\mu}_p$ is always a polynomial in p with non-negative integer coefficients.
- combinatorial interpretations are available (Butler 1994).
- theory is well developed (related to Hall polynomials etc.)

Symmetries of abelian groups

The group of symmetries of *A* is:

$$Aut(A) = \{g : A \rightarrow A \mid g \text{ is an isomorphism}\}\$$

Symmetries of abelian groups

The group of symmetries of A is:

$$Aut(A) = \{g : A \rightarrow A \mid g \text{ is an isomorphism}\}\$$

If *A* is a *p*-group of type λ , then $G_{\lambda}(p) = \operatorname{A}ut(A)$ is a group of order

$$p^{\sum_{i,j}\min(\lambda_i,\lambda_j)}\prod_{i=1}^{\infty}\prod_{j=1}^{m_i}(1-p^{-j}),$$

where $\lambda = (1^{m_1}2^{m_2}\cdots)$ (exponential notation).

The symmetry group ${\it G}$ acts on ${\it A}$.

The symmetry group G acts on A. It therefore acts on structures inside A such as:

elements of A

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

Problem

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

Problem

Count the number of G-orbits of structures in A

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

Problem

Count the number of *G*-orbits of structures in *A* Or better still,

The symmetry group G acts on A. It therefore acts on structures inside A such as:

- elements of A
- subgroups of A
- tuples of elements of A

Problem

Count the number of G-orbits of structures in A Or better still, develop a theory of G-orbits of structures in A

Example: points in a vector space

Take
$$\lambda = (1^n)$$

Example: points in a vector space

Take
$$\lambda = (1^n)$$

 $A = (\mathbf{Z}/p\mathbf{Z})^n$, $G = GL_n(\mathbf{Z}/p\mathbf{Z})$.

Example: points in a vector space

Take
$$\lambda = (1^n)$$

 $A = (\mathbf{Z}/p\mathbf{Z})^n$, $G = GL_n(\mathbf{Z}/p\mathbf{Z})$.
 G acts in tuples (x_1, \dots, x_k) in A :
 $g \cdot (x_1, \dots, x_k) = (gx_1, \dots, gx_k)$

Example: points in a vector space

Take
$$\lambda = (1^n)$$

 $A = (\mathbf{Z}/p\mathbf{Z})^n$, $G = GL_n(\mathbf{Z}/p\mathbf{Z})$.
 G acts in tuples (x_1, \dots, x_k) in A :

$$g\cdot(x_1,\ldots,x_k)=(gx_1,\ldots,gx_k)$$

The space of orbits for this action may be thought of as the space of k-point configurations.

Example: points in a vector space

Take $\lambda = (1^n)$ $A = (\mathbf{Z}/p\mathbf{Z})^n$, $G = GL_n(\mathbf{Z}/p\mathbf{Z})$. G acts in tuples (x_1, \dots, x_k) in A:

$$g\cdot(x_1,\ldots,x_k)=(gx_1,\ldots,gx_k)$$

The space of orbits for this action may be thought of as the space of k-point configurations.

Theorem

The number of G-orbits in A^k is given by

$$|G \backslash A^k| = \sum_{i=0}^{\min(n,k)} {k \choose i}_p.$$

Example: points in a vector space

Take
$$\lambda = (1^n)$$

 $A = (\mathbf{Z}/p\mathbf{Z})^n$, $G = GL_n(\mathbf{Z}/p\mathbf{Z})$.
 G acts in tuples (x_1, \dots, x_k) in A :

$$g\cdot(x_1,\ldots,x_k)=(gx_1,\ldots,gx_k)$$

The space of orbits for this action may be thought of as the space of k-point configurations.

Theorem

The number of G-orbits in A^k is given by

$$|G \backslash A^k| = \sum_{i=0}^{\min(n,k)} {k \choose i}_p.$$

Note

This is a polynomial in p with non-negative integer coefficients.

For general λ the problem of classifying G-orbits of points in A^k is open for k > 2 (and not fully understood for k = 2).

For general λ the problem of classifying G-orbits of points in A^k is open for k>2 (and not fully understood for k=2). When k=1, the problem is just that of classifying (or counting) G-orbits in A.

For general λ the problem of classifying G-orbits of points in A^k is open for k > 2 (and not fully understood for k = 2).

When k = 1, the problem is just that of classifying (or counting) G-orbits in A.

Example: $\lambda = (m^n)$

$$A=(\mathbf{Z}/p^m\mathbf{Z})^n.$$

For general λ the problem of classifying G-orbits of points in A^k is open for k > 2 (and not fully understood for k = 2).

When k = 1, the problem is just that of classifying (or counting) G-orbits in A.

Example:
$$\lambda = (m^n)$$

 $A = (\mathbf{Z}/p^m\mathbf{Z})^n$.

$$h(x_1,\ldots,x_k)=\min\{s\mid (x_1,\ldots,x_k)\in p^sA^k\}$$

For general λ the problem of classifying G-orbits of points in A^k is open for k > 2 (and not fully understood for k = 2).

When k = 1, the problem is just that of classifying (or counting) G-orbits in A.

Example: $\lambda = (m^n)$

$$A=(\mathbf{Z}/p^m\mathbf{Z})^n.$$

$$h(x_1,\ldots,x_k)=\min\{s\mid (x_1,\ldots,x_k)\in p^sA^k\}$$

Then (x_1, \ldots, x_k) and (y_1, \ldots, y_k) lie in the same G orbit if and only if

$$h(x_1,\ldots,x_k)=h(y_1,\ldots,y_k).$$

Suppose A and B are abelian groups.

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

there exists homomorphism $\phi: A \to B$ such that $\phi(a) = b$.

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

there exists homomorphism $\phi: A \to B$ such that $\phi(a) = b$.

Write $a \rightarrow b$.

For cyclic groups:

$$a=p^r\in \mathbf{Z}/p^k\mathbf{Z}$$

$$b = p^s \in \mathbf{Z}/p^l\mathbf{Z}$$

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

there exists homomorphism $\phi: A \to B$ such that $\phi(a) = b$.

Write $a \rightarrow b$.

For cyclic groups:

$$a = p^r \in \mathbf{Z}/p^k\mathbf{Z}$$

$$b = p^s \in \mathbf{Z}/p^l\mathbf{Z}$$

Then $a \rightarrow b$ if and only if

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

there exists homomorphism $\phi: A \to B$ such that $\phi(a) = b$.

Write $a \rightarrow b$.

For cyclic groups:

$$a=p^r\in \mathbf{Z}/p^k\mathbf{Z}$$

$$b = p^s \in \mathbf{Z}/p^l\mathbf{Z}$$

Then $a \rightarrow b$ if and only if

▶
$$r \leq s$$

Suppose A and B are abelian groups.

Definition

Say $a \in A$ degenerates to $b \in B$ if:

there exists homomorphism $\phi: A \to B$ such that $\phi(a) = b$.

Write $a \rightarrow b$.

For cyclic groups:

$$a = p^r \in \mathbf{Z}/p^k\mathbf{Z}$$

$$b = p^s \in \mathbf{Z}/p^l\mathbf{Z}$$

Then $a \rightarrow b$ if and only if

$$k-r \ge l-s$$

Points of *P*:

$$(r, k), 0 \le k < \infty; 0 \le r < k$$

Points of P:

$$(r, k), 0 \le k < \infty; 0 \le r < k$$

Say that $(r, k) \ge (s, l)$ if

Points of P:

$$(r, k), 0 \le k < \infty; 0 \le r < k$$

Say that $(r, k) \ge (s, l)$ if

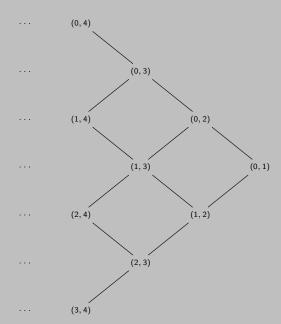
$$r \le s$$

Points of P:

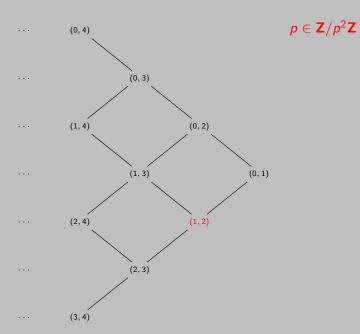
$$(r, k), 0 \le k < \infty; 0 \le r < k$$

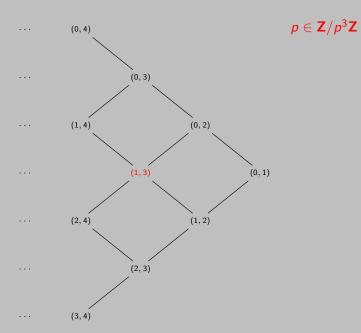
Say that $(r, k) \ge (s, l)$ if

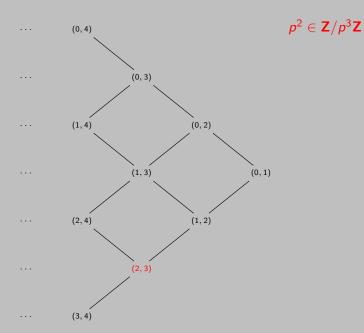
- ▶ $r \leq s$
- $k-r \ge l-s$

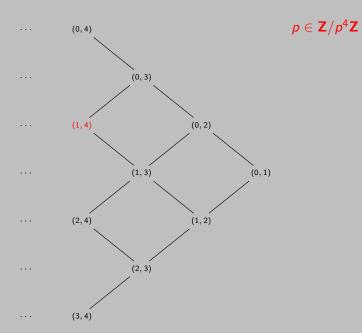


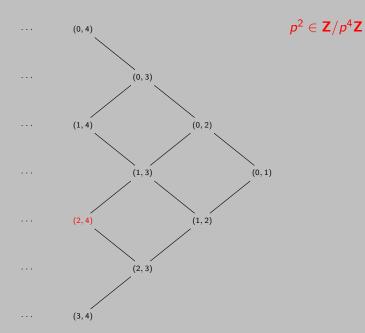
 $1 \in \mathbf{Z}/p^2\mathbf{Z}$

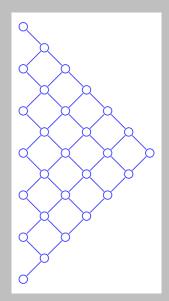






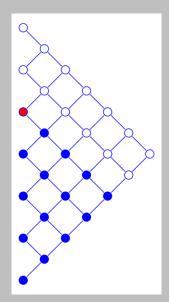






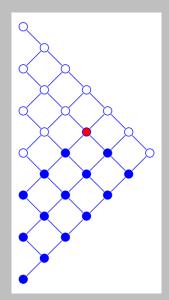
$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



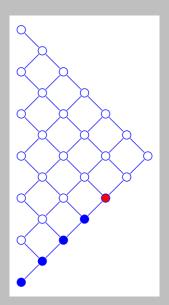
$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



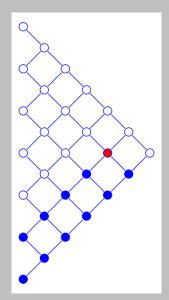
$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



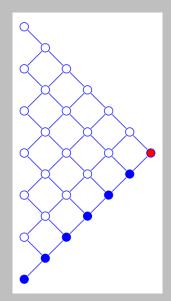
$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



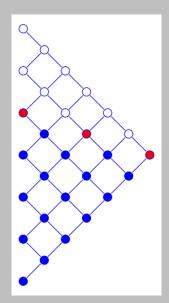
$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$



$$(p^2, 0, p, p^2, p, 1)$$

 $\lambda = (7, 6, 4, 3, 3, 1)$

For abelian *p*-groups *A* and *B*, let $a \in A$ and $b \in B$.

For abelian p-groups A and B, let $a \in A$ and $b \in B$. Let I(a) and I(b) denote the order ideals of a and b in the fundamental poset.

For abelian p-groups A and B, let $a \in A$ and $b \in B$. Let I(a) and I(b) denote the order ideals of a and b in the fundamental poset.

It is easy to show that:

$$a \rightarrow b$$
 if and only if $I(a) \supset I(b)$.

For abelian p-groups A and B, let $a \in A$ and $b \in B$. Let I(a) and I(b) denote the order ideals of a and b in the fundamental poset.

It is easy to show that:

$$a \rightarrow b$$
 if and only if $I(a) \supset I(b)$.

As a consequence, if $a, b \in A$ are in the same G-orbit, we must have:

$$I(a) = I(b)$$

For abelian p-groups A and B, let $a \in A$ and $b \in B$. Let I(a) and I(b) denote the order ideals of a and b in the fundamental poset.

It is easy to show that:

$$a \rightarrow b$$
 if and only if $I(a) \supset I(b)$.

As a consequence, if $a, b \in A$ are in the same G-orbit, we must have:

$$I(a) = I(b)$$

Theorem (with Kunal Dutta)

Two elements $a, b \in A$ lie in the same G-orbit if and only if I(a) = I(b).

For a partition λ , and and ideal I in the fundamental poset define:

$$[I]_{\lambda} = \sum_{(v,k)\in I} m_{\lambda}(k),$$

For a partition λ , and and ideal I in the fundamental poset define:

$$[I]_{\lambda} = \sum_{(v,k)\in I} m_{\lambda}(k),$$

where $m_{\lambda}(k)$ is the number of times k occurs in λ .

For a partition λ , and and ideal I in the fundamental poset define:

$$[I]_{\lambda} = \sum_{(v,k)\in I} m_{\lambda}(k),$$

where $m_{\lambda}(k)$ is the number of times k occurs in λ . It is easy to see that (for A of type λ)

$$\beta_I := \#\{a \in A \mid I(a) \subset I\} = [I]_{\lambda}.$$

For a partition λ , and and ideal I in the fundamental poset define:

$$[I]_{\lambda} = \sum_{(v,k)\in I} m_{\lambda}(k),$$

where $m_{\lambda}(k)$ is the number of times k occurs in λ . It is easy to see that (for A of type λ)

$$\beta_I := \#\{a \in A \mid I(a) \subset I\} = [I]_{\lambda}.$$

Using Möbius inversion on the lattice of order ideals in P, we get the cardinality of a G-orbit in A:

$$\alpha_I := \#\{a \in A \mid I(a) = I\} = [I]_{\lambda} \prod_{(v,k) \in \max I} (1 - p^{-m_{\lambda}(k)}).$$

In the example

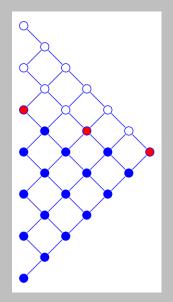
$$a = (p^{2}, 0, p, p^{2}, p, 1)$$

$$\lambda = (7, 6, 4, 3, 3, 1)$$

$$[I]_{\lambda} = 5 + 4 + 3 + 2 \times 2 + 1$$

$$\max I = \{(2, 7), (1, 4), (0, 1)\}$$

$$\alpha_{I} = p^{17}(1 - p^{-1})^{2}(1 - p^{-2})$$



Orbits of pairs

Theorem (with C. P. Anilkumar)

For every partition λ , there exists a monic polynomial $n_{\lambda}(t)$ with integer coefficients with degree λ_1 such that, for any prime p, if A is an abelian p-group of type λ , then the number of G-orbits in $A \times A$ is given by

$$|G\setminus (A\times A)|=n_{\lambda}(p).$$

(1)	t+2
(2)	$t^2 + 2t + 2$
(1,1)	t+3
(3)	$t^3 + 2t^2 + 2t + 2$
(2,1)	$t^2 + 5t + 5$
(1, 1, 1)	t+3
(4)	$t^4 + 2t^3 + 2t^2 + 2t + 2$
(3,1)	$t^3 + 5t^2 + 7t + 4$
(2,2)	$t^2 + 3t + 5$
(2,1,1)	$t^2 + 5t + 6$
(1,1,1,1)	t+3
(5)	$t^5 + 2t^4 + 2t^3 + 2t^2 + 2t + 2$
(4,1)	$t^4 + 5t^3 + 7t^2 + 6t + 4$
(3,2)	$t^3 + 5t^2 + 10t + 7$
(3,1,1)	$t^3 + 5t^2 + 8t + 6$
(2,2,1)	$t^2 + 6t + 8$
(2,1,1,1)	$t^2 + 5t + 6$
(1,1,1,1,1)	t+3

Open Conjecture

For every partition λ , $n_{\lambda}(t)$ has non-negative integer coefficients.

Open Conjecture

For every partition λ , $n_{\lambda}(t)$ has non-negative integer coefficients.

The polynomials $n_{\lambda}(t)$ were computed for all partitions λ of positive integers up to 21, and were found to satisfy the conjecture.

Open Conjecture

For every partition λ , $n_{\lambda}(t)$ has non-negative integer coefficients.

The polynomials $n_{\lambda}(t)$ were computed for all partitions λ of positive integers up to 21, and were found to satisfy the conjecture.

To access raw data visit: http://www.imsc.res.in/~amri/pairs/

Let A be a finite abelian group.

Definition

Say that a tuple $\mathbf{a} = (a_1, \dots, a_k)$ degenerates to $\mathbf{b} = (b_1, \dots, b_k)$ (denoted $\mathbf{a} \to \mathbf{b}$ if there exists an endomorphism $\phi : A \to A$ such that

$$\phi(a_i) = b_i \text{ for } i = 1, \ldots, k.$$

Let A be a finite abelian group.

Definition

Say that a tuple $\mathbf{a}=(a_1,\ldots,a_k)$ degenerates to $\mathbf{b}=(b_1,\ldots,b_k)$ (denoted $\mathbf{a}\to\mathbf{b}$ if there exists an endomorphism $\phi:A\to A$ such that

$$\phi(a_i) = b_i$$
 for $i = 1, \ldots, k$.

Similarly say that a subgroup B_1 of A degenerates to a subgroup B_2 of A (denoted $B_1 \to B_2$) if there exists an endomorphism $\phi: A \to A$ such that

$$\phi(B_1)=B_2.$$

Let A be a finite abelian group.

Definition

Say that a tuple $\mathbf{a}=(a_1,\ldots,a_k)$ degenerates to $\mathbf{b}=(b_1,\ldots,b_k)$ (denoted $\mathbf{a}\to\mathbf{b}$ if there exists an endomorphism $\phi:A\to A$ such that

$$\phi(a_i) = b_i$$
 for $i = 1, \ldots, k$.

Similarly say that a subgroup B_1 of A degenerates to a subgroup B_2 of A (denoted $B_1 \to B_2$) if there exists an endomorphism $\phi: A \to A$ such that

$$\phi(B_1)=B_2.$$

Clearly, if two tuples or subgroups lie in the same G-orbit, then they degenerate to each other.

Theorem (with Wesley Calvert and Kunal Dutta) If tuples $\mathbf{a} \to \mathbf{b}$ and $\mathbf{b} \to \mathbf{a}$, then \mathbf{a} and \mathbf{b} lie in the same G-orbit.

Theorem (with Wesley Calvert and Kunal Dutta)

If tuples $\mathbf{a} \to \mathbf{b}$ and $\mathbf{b} \to \mathbf{a}$, then \mathbf{a} and \mathbf{b} lie in the same G-orbit. Similarly if subgroups $B_1 \to B_2$ and $B_2 \to B_1$, then they lie in the same subgroup.

Theorem (with Wesley Calvert and Kunal Dutta)

If tuples $\mathbf{a} \to \mathbf{b}$ and $\mathbf{b} \to \mathbf{a}$, then \mathbf{a} and \mathbf{b} lie in the same G-orbit. Similarly if subgroups $B_1 \to B_2$ and $B_2 \to B_1$, then they lie in the same subgroup.

The proof is based on a proof of Mackey and Kaplansky of Ulm's theorem, which provides a classification of countable reduced torsion abelian groups. The result therefore holds in their more general setting. Nevertheless, it seems to be non-trivial even for finite abelian groups.

Consequence

Degeneration descends to a poset structure on the set of G-orbits of tuples or subgroups.

References

- 1. Degenerations and orbits in finite abelian groups, with Kunal Dutta, *J. Combin. Th. Ser. A*, 118(6):1685-1694, 2011.
- 2. Degeneration and orbits of tuples and subgroups in an Abelian group, with Wesley Calvert and Kunal Dutta, *J. Group Theory* 16:221-233, 2013.
- 3. Orbits of Pairs in Abelian Groups, with C. P. Anilkumar, *Sém. Lothar. Combin.* 70:B70h, 2014.