S_n - nth symmetric group.
S_n - nth symmetric group.
λ - integer partition of n.

The problem
The map $w \mapsto \det(\rho_{\lambda}(w))$ is either the trivial character, or the sign character of S_n.
We call λ chiral if $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character of S_n.

For how many partitions of n are chiral?

Definition $b(n) =$ number of chiral partitions of n.

S_n - nth symmetric group.

λ - integer partition of n.

$(\rho_{\lambda}, V_{\lambda})$ - irreducible representation of S_n corresponding to λ.
S_n - nth symmetric group.

λ - integer partition of n.

$(\rho_\lambda, V_\lambda)$ - irreducible representation of S_n corresponding to λ.

The problem

The map $w \mapsto \det(\rho_\lambda(w))$ is either the trivial character, or the sign character of S_n.

For how many partitions of n are chiral?

Definition

$b(n) = \text{number of chiral partitions of } n$.

S_n - nth symmetric group.
λ - integer partition of n.
$(\rho_\lambda, V_\lambda)$ - irreducible representation of S_n corresponding to λ.

The problem

The map $w \mapsto \det(\rho_\lambda(w))$ is either the trivial character, or the sign character of S_n.
We call λ **chiral** if $w \mapsto \det(\rho_\lambda(w))$ is the sign character of S_n.

For how many partitions of n are chiral?

Definition

$b(n) =$ number of chiral partitions of n.
S_n - nth symmetric group.

λ - integer partition of n.

$(\rho_\lambda, V_\lambda)$ - irreducible representation of S_n corresponding to λ.

The problem

The map $w \mapsto \det(\rho_\lambda(w))$ is either the trivial character, or the sign character of S_n.

We call λ chiral if $w \mapsto \det(\rho_\lambda(w))$ is the sign character of S_n.

For how many partitions of n are chiral?
S_n - nth symmetric group.
λ - integer partition of n.
$(\rho_\lambda, V_\lambda)$ - irreducible representation of S_n corresponding to λ.

The problem
The map $w \mapsto \det(\rho_\lambda(w))$ is either the trivial character, or the sign character of S_n.
We call λ chiral if $w \mapsto \det(\rho_\lambda(w))$ is the sign character of S_n.
For how many partitions of n are chiral?

Definition

$$b(n) = \text{number of chiral partitions of } n.$$
<table>
<thead>
<tr>
<th>n</th>
<th>$p(n)$</th>
<th>$b(n)$</th>
<th>$b(n)/p(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>56</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>101</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>135</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>176</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>231</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>297</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>385</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>490</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>627</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>792</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1002</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1255</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1575</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1958</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2436</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3010</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3718</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4565</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5604</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6842</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8349</td>
<td>1360</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>10143</td>
<td>2384</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12310</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$p(n)$</td>
<td>$b(n)$</td>
<td>$b(n)/p(n)$</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>100</td>
<td>190569292</td>
<td>6144</td>
<td>$3.2240241518 \times 10^{-05}$</td>
</tr>
<tr>
<td>200</td>
<td>3972999029388</td>
<td>98304</td>
<td>$2.47430213984 \times 10^{-08}$</td>
</tr>
<tr>
<td>300</td>
<td>9253082936723602</td>
<td>196608</td>
<td>$2.12478372176 \times 10^{-11}$</td>
</tr>
<tr>
<td>400</td>
<td>6727090051741041926</td>
<td>2883584</td>
<td>$4.28652504697 \times 10^{-13}$</td>
</tr>
<tr>
<td>500</td>
<td>230016503257432395027</td>
<td>3221225472</td>
<td>$1.40043232828 \times 10^{-12}$</td>
</tr>
<tr>
<td>600</td>
<td>458004788008144308553622</td>
<td>6291456</td>
<td>$1.37366598881 \times 10^{-17}$</td>
</tr>
<tr>
<td>700</td>
<td>60378285202834474611028659</td>
<td>805306368</td>
<td>$1.33376820043 \times 10^{-17}$</td>
</tr>
<tr>
<td>800</td>
<td>5733052172321422504456911979</td>
<td>178257920</td>
<td>$3.10930224673 \times 10^{-20}$</td>
</tr>
<tr>
<td>900</td>
<td>415873681190459054784114365430</td>
<td>50331648</td>
<td>$1.21026288213 \times 10^{-22}$</td>
</tr>
<tr>
<td>1000</td>
<td>24061467864032622473692149727991</td>
<td>412316860416</td>
<td>$1.71359811773 \times 10^{-20}$</td>
</tr>
<tr>
<td>1100</td>
<td>1147240591519695580043346988281283</td>
<td>1572864</td>
<td>$1.37099751493 \times 10^{-27}$</td>
</tr>
<tr>
<td>1200</td>
<td>46240102378152881298913555099661657</td>
<td>369098752</td>
<td>$7.98222177325 \times 10^{-27}$</td>
</tr>
<tr>
<td>1300</td>
<td>160781885017534550841511230454411672</td>
<td>12582912</td>
<td>$7.82607565568 \times 10^{-30}$</td>
</tr>
<tr>
<td>1400</td>
<td>490321946525503947743894069153298261</td>
<td>103079215104</td>
<td>$2.10227618475 \times 10^{-27}$</td>
</tr>
<tr>
<td>1500</td>
<td>1329461690763193888825263136701886891117</td>
<td>824633720832</td>
<td>$6.20276407031 \times 10^{-28}$</td>
</tr>
<tr>
<td>1600</td>
<td>32417690376154241824102577250721959572183</td>
<td>22699573248</td>
<td>$7.0022179201 \times 10^{-31}$</td>
</tr>
<tr>
<td>1700</td>
<td>7178020419649414424786815116751205185010007</td>
<td>6442450944</td>
<td>$8.97524744617 \times 10^{-33}$</td>
</tr>
<tr>
<td>1800</td>
<td>14552716211005418005132948684850541312590849</td>
<td>1610612736</td>
<td>$1.10674372581 \times 10^{-34}$</td>
</tr>
<tr>
<td>1900</td>
<td>272089289788583262011466359201428623427767364</td>
<td>659706976656</td>
<td>$2.42459737088 \times 10^{-32}$</td>
</tr>
</tbody>
</table>
The OEIS Foundation is grateful to everyone who made a donation during our Annual Appeal. Visit the new and spectacular Pictures from the OEIS page!

Search: a045923
Displaying 1-1 of 1 result found.
Sort: relevance | references | number | modified | created | Format: long | short | data

<table>
<thead>
<tr>
<th>A045923</th>
<th>Number of irreducible representations of symmetric group S_n for which every matrix has determinant 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 1, 1, 2, 7, 7, 10, 10, 34, 40, 53, 61, 103, 112, 143, 145, 369, 458, 579, 712, 938, 1127, 1383, 1638, 2308, 2754, 3334, 3925, 5092 (list; graph; refs; listen; history; text; internal format)</td>
<td></td>
</tr>
</tbody>
</table>

OFFSET
1, 4

COMMENTS
Irreducible representations of S_n contained in the special linear group were first considered by L. Solomon (unpublished).

REFERENCES

LINKS
Table of n, a(n) for n=1..30.

EXAMPLE
a(5)=2, since only the irreducible representations indexed by the partitions (5) and (3,2) are contained in the special linear group.

KEYWORD
nonn,nice

AUTHOR
Richard Stanley

STATUS
approved
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{\nu=1}^{k_1-1} 2^{(\nu+1)(k_1-2)-\binom{\nu}{2}} + \epsilon 2^{k_1-2} \right).$$

Example
Take $n = 41 = 1 + 2^{3} + 2^{5}$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.

$$b(41) = 2^{5} \times \left(2^{3-1} + \sum_{\nu=1}^{3-1} 2^{(\nu+1)(3-2)-\binom{\nu}{2}} + 1 \times 2^{3-2} \right) = 640.$$
Closed Formula for number of representations of \(S_n \) with non-trivial determinant

Suppose \(n \) has binary expansion:

\[
n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \quad \text{with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},
\]

Then the number of partitions \(\lambda \) of \(n \) for which \(w \mapsto \det(\rho_\lambda(w)) \) is the sign character is

\[
2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1-1} 2^{v+1}(k_1-2) - \binom{v}{2} + \epsilon 2^{\binom{k_1}{2}} \right).
\]

Example Take \(n = 41 \)
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2+\cdots+k_r} \left(2^{k_1-1} + \sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-2)-(v)} + \epsilon 2^{\binom{k_1}{2}} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$.
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-2)-(\tbinom{v}{2})} + \epsilon 2^{\tbinom{k_1}{2}} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-2)-(v\choose 2)} + \epsilon 2^{k_1 \choose 2} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$. $b(41) = 2^5$
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2+\cdots+k_r} \left(2^{k_1-1} + \sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-2)-(\frac{v}{2})} + \epsilon 2^{(\frac{k_1}{2})} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$.
So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.
$b(41) = 2^5 \times (2^{3-1} + 2^{2\times1-\left(\frac{1}{2}\right)} + 2^{3\times1-\left(\frac{3}{2}\right)}$
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1} + \sum_{\nu=1}^{k_1-1} 2^{(\nu+1)(k_1-2)-(\nu)(2)} + \epsilon 2^{(k_1)(2)} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$.
So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.

$$b(41) = 2^5 \times \left(2^{3-1} + 2^{2\times1-\binom{1}{2}} + 2^{3\times1-\binom{3}{2}} + 2^{\binom{3}{2}} \right)$$
Closed Formula for number of representations of S_n with non-trivial determinant

Suppose n has binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

Then the number of partitions λ of n for which $w \mapsto \det(\rho_\lambda(w))$ is the sign character is

$$2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1 - 1} 2^{(v+1)(k_1-2)-(v-1)2} + \epsilon 2^{\binom{k_1}{2}} \right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$.
So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.

$$b(41) = 2^5 \times \left(2^{3-1} + 2^{2\times 1-\binom{1}{2}} + 2^{3\times 1-\binom{3}{2}} + 2^{\binom{3}{2}} \right) = 640.$$
A Combinatorial Interpretation of the Determinant

The vector space V_{λ} has a basis (Young's orthogonal form)

$\{ v_T | T \text{ a standard tableau of shape } \lambda \}$.

$\rho_{\lambda}(s_i)v_T = v_T$ if i and $i+1$ are in the same row of T,

$-v_T$ if i and $i+1$ are in the same column of T,

If neither case holds, then the action is more complicated.

But 1 and 2 are always in the same row or same column.

The vectors v_T are eigenvectors of $\rho_{\lambda}(s_1)$ with eigenvalue ± 1.

Let g_{λ} denote the number of standard tableaux with 1 and 2 in the same column.

Conclusion

$\det \circ \rho_{\lambda}$ is the sign character if and only if g_{λ} is odd.
A Combinatorial Interpretation of the Determinant

The vector space V_λ has a basis (Young’s orthogonal form)

$$\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$$
A Combinatorial Interpretation of the Determinant

The vector space V_λ has a basis (Young’s orthogonal form)

$$\{ v_T \mid T \text{ a standard tableau of shape } \lambda \}.$$

$$\rho_\lambda(s_i)v_T = \begin{cases}
 v_T & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\
 -v_T & \text{if } i \text{ and } i+1 \text{ are in the same column of } T,
\end{cases}$$
A Combinatorial Interpretation of the Determinant

The vector space V_λ has a basis (Young’s orthogonal form)

$$\{ v_T \mid T \text{ a standard tableau of shape } \lambda \}.$$

$$\rho_\lambda(s_i)v_T = \begin{cases} v_T & \text{if } i \text{ and } i + 1 \text{ are in the same row of } T, \\ -v_T & \text{if } i \text{ and } i + 1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated.
A Combinatorial Interpretation of the Determinant

The vector space V_λ has a basis (Young’s orthogonal form)

$$\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$$

$$\rho_\lambda(s_i)v_T = \begin{cases} v_T & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\ -v_T & \text{if } i \text{ and } i+1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column.
A Combinatorial Interpretation of the Determinant

The vector space V_{λ} has a basis (Young’s orthogonal form)

$$\{ v_T \mid T \text{ a standard tableau of shape } \lambda \}.$$

$$\rho_{\lambda}(s_i)v_T = \begin{cases}
 v_T & \text{if } i \text{ and } i + 1 \text{ are in the same row of } T, \\
 -v_T & \text{if } i \text{ and } i + 1 \text{ are in the same column of } T,
\end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column. The vectors v_T are eigenvectors of $\rho_{\lambda}(s_1)$ with eigenvalue ± 1. Let g_{λ} denote the number of standard tableaux with 1 and 2 in the same column.

Conclusion $\det \circ \rho_{\lambda}$ is the sign character if and only if g_{λ} is odd.
A Combinatorial Interpretation of the Determinant

The vector space V_λ has a basis (Young’s orthogonal form)

$$\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$$

$$\rho_\lambda(s_i)v_T = \begin{cases} v_T & \text{if } i \text{ and } i + 1 \text{ are in the same row of } T, \\ -v_T & \text{if } i \text{ and } i + 1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column.

The vectors v_T are eigenvectors of $\rho_\lambda(s_1)$ with eigenvalue ± 1.
Let g_λ denote the number of standard tableaux with 1 and 2 in the same column.
A Combinatorial Interpretation of the Determinant

The vector space V_{λ} has a basis (Young’s orthogonal form)

$$\{ v_T \mid T \text{ a standard tableau of shape } \lambda \}.$$

$$\rho_{\lambda}(s_i)v_T = \begin{cases} v_T & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\ -v_T & \text{if } i \text{ and } i+1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column. The vectors v_T are eigenvectors of $\rho_{\lambda}(s_1)$ with eigenvalue ± 1.

Let g_λ denote the number of standard tableaux with 1 and 2 in the same column.

Conclusion

$\det \circ \rho_{\lambda}$ is the sign character if and only if g_λ is odd.
Relation to the character value at \((2, 1^{n-2})\)
Relation to the character value at \((2, 1^{n-2})\)

\[
f_{\lambda} \quad - \quad \text{number of SYT of shape } \lambda,
\]

\(f_{\lambda}\) - number of SYT of shape \(\lambda\),
Relation to the character value at \((2, 1^{n-2})\)

\[
\begin{array}{ll}
f_\lambda & \text{- number of SYT of shape } \lambda, \\
\dim(V_\lambda) & \\
\end{array}
\]

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = f_\lambda C(\lambda) \left(\binom{n-2}{2} \right).
\]

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)
Relation to the character value at \((2, 1^{n-2})\)

\[\begin{array}{ll}
 f_\lambda & - \text{number of SYT of shape } \lambda, \\
 \dim(V_\lambda) & \\
 g_\lambda & - \text{number of such SYT with 1 and 2 in the same column}
\end{array}\]

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[\chi_\lambda(2, 1^{n-2}) = f_\lambda C(\lambda, n^2).\]

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)
Relation to the character value at $(2, 1^{n-2})$

<table>
<thead>
<tr>
<th>f_λ</th>
<th>number of SYT of shape λ, $\dim(V_\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_λ</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of -1 as eigenvalue of $\rho_\lambda(s_1)$</td>
</tr>
</tbody>
</table>

The character value $\chi_\lambda(2, 1^{n-2})$ has a nice formula:

$$\chi_\lambda(2, 1^{n-2}) = f_\lambda - 2g_\lambda$$

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)
Relation to the character value at \((2, 1^{n-2})\)

<table>
<thead>
<tr>
<th>(f_\lambda)</th>
<th>number of SYT of shape (\lambda), (\dim(V_\lambda))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_\lambda)</td>
<td>number of such SYT with 1 and 2 in the same column, multiplicity of (-1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - g_\lambda)</td>
<td>number of SYT with 1 and 2 in the same row</td>
</tr>
</tbody>
</table>

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = f_\lambda - C(\lambda)(n^2) - 2g_\lambda
\]

(Macdonald, Symmetric functions and Hall polynomials, p. 118, using the theory of skew-Schur functions)
Relation to the character value at $(2, 1^{n-2})$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_λ</td>
<td>number of SYT of shape λ, $\dim(V_\lambda)$</td>
</tr>
<tr>
<td>g_λ</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of -1 as eigenvalue of $\rho_\lambda(s_1)$</td>
</tr>
<tr>
<td>$f_\lambda - g_\lambda$</td>
<td>number of SYT with 1 and 2 in the same row multiplicity of $+1$ as eigenvalue of $\rho_\lambda(s_1)$</td>
</tr>
</tbody>
</table>

The character value $\chi_\lambda(2, 1^{n-2})$ has a nice formula:

$$\chi_\lambda(2, 1^{n-2}) = f_\lambda C(\lambda)(n^2).$$

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)
Relation to the character value at \((2, 1^{n-2})\)

<table>
<thead>
<tr>
<th>(f_\lambda)</th>
<th>number of SYT of shape (\lambda), (\dim(V_\lambda))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_\lambda)</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of (-1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - g_\lambda)</td>
<td>number of SYT with 1 and 2 in the same row multiplicity of (+1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - 2g_\lambda)</td>
<td>trace of (\rho_\lambda(s_1))</td>
</tr>
</tbody>
</table>

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = f_\lambda C(\lambda)(n^2).
\]

(Macdonald, Symmetric functions and Hall polynomials, p. 118, using the theory of skew-Schur functions)
Relation to the character value at \((2, 1^{n-2})\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_\lambda)</td>
<td>number of SYT of shape (\lambda), (\dim(V_\lambda))</td>
</tr>
<tr>
<td>(g_\lambda)</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of (-1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - g_\lambda)</td>
<td>number of SYT with 1 and 2 in the same row multiplicity of (+1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - 2g_\lambda)</td>
<td>trace of (\rho_\lambda(s_1)) (\chi_\lambda(2, 1^{n-2}))</td>
</tr>
</tbody>
</table>

\(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = f_\lambda C(\lambda)_{n-2}.
\]

(Macdonald, Symmetric functions and Hall polynomials, p. 118, using the theory of skew-Schur functions)
 Relation to the character value at \((2, 1^{n-2})\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_\lambda)</td>
<td>number of SYT of shape (\lambda), (\dim(V_\lambda))</td>
</tr>
<tr>
<td>(g_\lambda)</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of (-1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - g_\lambda)</td>
<td>number of SYT with 1 and 2 in the same row multiplicity of (+1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - 2g_\lambda)</td>
<td>trace of (\rho_\lambda(s_1)) (= \chi_\lambda(2, 1^{n-2}))</td>
</tr>
</tbody>
</table>

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = \frac{f_\lambda C(\lambda)}{\binom{n}{2}}.
\]
Relation to the character value at \((2, 1^{n-2})\)

<table>
<thead>
<tr>
<th>(f_\lambda)</th>
<th>number of SYT of shape (\lambda), (\dim(V_\lambda))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_\lambda)</td>
<td>number of such SYT with 1 and 2 in the same column multiplicity of (-1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - g_\lambda)</td>
<td>number of SYT with 1 and 2 in the same row multiplicity of (+1) as eigenvalue of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td>(f_\lambda - 2g_\lambda)</td>
<td>trace of (\rho_\lambda(s_1))</td>
</tr>
<tr>
<td></td>
<td>(= \chi_\lambda(2, 1^{n-2}))</td>
</tr>
</tbody>
</table>

The character value \(\chi_\lambda(2, 1^{n-2})\) has a nice formula:

\[
\chi_\lambda(2, 1^{n-2}) = \frac{f_\lambda C(\lambda)}{\binom{n}{2}}.
\]

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)
Content of a Partition
Content of a Partition

The content of \((i, j)\) is \(j - i\).
Content of a Partition

The content of \((i, j)\) is \(j - i\).

The content of a partition is the sum of the contents of the cells in its Young diagram:
Content of a Partition

The content of \((i,j)\) is \(j - i\).

The content of a partition is the sum of the contents of the cells in its Young diagram:

\[
\lambda = (4, 2) = \begin{array}{ccc}
\square & \square & \\
\square & \\
\end{array}
\]
Content of a Partition

The content of \((i, j)\) is \(j - i\).

The content of a partition is the sum of the contents of the cells in its Young diagram:

\[
\lambda = (4, 2) = \begin{array}{ccc}
\hline
& & \\
& & \\
& & \\
\hline
\end{array}
\]

\[
C(\lambda) = \sum \begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & & \\
\end{array} = 5
\]
Content of a Partition

The content of \((i, j)\) is \(j - i\).
The content of a partition is the sum of the contents of the cells in its Young diagram:

\[
\lambda = (4, 2) = \begin{array}{cccc}
\text{cell} & \text{cell} & \text{cell} & \text{cell} \\
0 & 1 & 2 & 3 \\
-1 & 0 & & \\
\end{array}
\]

\[
C(\lambda) = \sum \begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & & \\
\end{array} = 5
\]

Character Formula:

\[
\chi_{\lambda}(2, 1^{n-2}) = \frac{f_{\lambda} C(\lambda)}{\binom{n}{2}}.
\]
Formula for g_λ

\[
g_\lambda = \left(f_\lambda - \chi_\lambda(2, 1^{n-2}) \right)/2
= f_\lambda \left(\frac{\left(\begin{array}{c} n \\ 2 \end{array} \right) - C(\lambda)}{\left(\begin{array}{c} n \\ 2 \end{array} \right)} \right)
\]
Formula for g_λ

$$g_\lambda = (f_\lambda - \chi_\lambda(2, 1^{n-2}))/2$$

$$= f_\lambda \left(\frac{n}{2} - C(\lambda) \right)$$

So ρ_λ is chiral if and only if:

$$\nu_2(f_\lambda) + \nu_2\left(\left(\frac{n}{2} \right) - C(\lambda) \right) = \nu_2\left(\frac{n}{2} \right)$$
To understand $v_2(f_{\lambda})$
To understand $v_2(f_\lambda)$

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$f_\lambda = \frac{n!}{\prod_{(i,j) \in \lambda} h(i,j)}$$

Example

Hook-lengths of $(4,2)$ are

$$5 \ 4 \ 2 \ 1 \ 2 \ 1$$

so

$$f(4,2) = 6! \times 5 \times 4 \times 2 \times 1 \times 2 \times 1 = 9.$$
To understand $v_2(f_\lambda)$

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$ f_\lambda = \frac{n!}{\prod_{(i,j) \in \lambda} h(i,j)} $$

Example

Hook-lengths of $(4, 2)$ are

\[
\begin{array}{cccc}
5 & 4 & 2 & 1 \\
2 & 1 & & \\
\end{array}
\]
To understand $v_2(f_\lambda)$

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$f_\lambda = \frac{n!}{\prod_{(i,j) \in \lambda} h(i,j)}$$

Example

Hook-lengths of $(4, 2)$ are

$$
\begin{array}{ccc}
5 & 4 & 2 \\
2 & 1 & 1
\end{array},
$$

so

$$f_{(4,2)} = \frac{6!}{5 \times 4 \times 2 \times 1 \times 2 \times 1} = 9.$$
To understand $v_2(f_{\lambda})$
To understand $v_2(f_{\lambda})$

Another ingredient is the theory of cores and quotients of partitions:

$|\lambda| = |\text{core}_p \lambda| + p(|\lambda_0| + \cdots + |\lambda_{p-1}|)$.
To understand $v_2(f_\lambda)$

Another ingredient is the theory of cores and quotients of partitions:

$$\lambda \leftrightarrow (\text{core}_p \lambda, \text{quo}_p \lambda).$$
To understand $v_2(f_\lambda)$

Another ingredient is the theory of cores and quotients of partitions:

$$\lambda \leftrightarrow (\text{core}_p \lambda, \text{quo}_p \lambda).$$

The partition $\text{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many p-hooks as possible. The p-quotient $\text{quo}_p \lambda$ is a p-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions.
To understand $v_2(f_{\lambda})$

Another ingredient is the theory of cores and quotients of partitions:

$$\lambda \leftrightarrow (\text{core}_p \lambda, \text{quo}_p \lambda).$$

The partition $\text{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many p-hooks as possible. The p-quotient $\text{quo}_p \lambda$ is a p-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\text{quo}_p \lambda$ is the number of p-hooks whose rims were removed from λ to obtain $\text{core}_p \lambda$.
To understand $v_2(f_{\lambda})$

Another ingredient is the theory of cores and quotients of partitions:

$$\lambda \leftrightarrow (\text{core}_p \lambda, \text{quo}_p \lambda).$$

The partition $\text{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many p-hooks as possible. The p-quotient $\text{quo}_p \lambda$ is a p-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\text{quo}_p \lambda$ is the number of p-hooks whose rims were removed from λ to obtain $\text{core}_p \lambda$.

$$|\lambda| = |\text{core}_p \lambda| + p(|\lambda_0| + \cdots + |\lambda_{p-1}|).$$
To understand $v_2(f_\lambda)$

Another ingredient is the theory of cores and quotients of partitions:

$$\lambda \leftrightarrow (\text{core}_p \lambda, \text{quo}_p \lambda).$$

The partition $\text{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many p-hooks as possible. The p-quotient $\text{quo}_p \lambda$ is a p-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\text{quo}_p \lambda$ is the number of p-hooks whose rims were removed from λ to obtain $\text{core}_p \lambda$.

$$|\lambda| = |\text{core}_p \lambda| + p(|\lambda_0| + \cdots + |\lambda_{p-1}|).$$

The size of the partition λ_k in the p-quotient is the number of nodes in the Young diagram of λ whose hook-lengths are multiples of p, and whose hand-nodes have content congruent to k modulo p (by definition, the content of the node (i,j) is $j - i$). The partition λ can be recovered uniquely from $\text{core}_p \lambda$ and $\text{quo}_p \lambda$.
Example of core

The 2-core of (5, 4, 2, 2, 1) is (3, 2, 1):
Example of quotient

The hook-lengths of \((5, 4, 2, 2, 1, 1)\) are:

\[
\begin{array}{cccc}
10 & 7 & 4 & 3 \\
8 & 5 & 2 & 1 \\
5 & 2 & & \\
4 & 1 & & \\
2 & & & \\
1 & & & \\
\end{array}
\]
Example of quotient

The hook-lengths of (5, 4, 2, 2, 1, 1) are:

<table>
<thead>
<tr>
<th>10</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And its 2-quotient is given by
A result from Frame-Robinson-Thrall

Lemma
There exists a bijection from the set of cells in $\text{quo}_p \lambda$ onto the set of cells in λ whose hook-lengths are divisible by p under which a cell of hook-length h in $\text{quo}_p \lambda$ is mapped to a cell of hook-length ph in λ.
A result from Frame-Robinson-Thrall

Lemma
There exists a bijection from the set of cells in \(\text{quo}_p \lambda \) onto the set of cells in \(\lambda \) whose hook-lengths are divisible by \(p \) under which a cell of hook-length \(h \) in \(\text{quo}_p \lambda \) is mapped to a cell of hook-length \(ph \) in \(\lambda \).

In our example:
A result from Frame-Robinson-Thrall

Lemma
There exists a bijection from the set of cells in $\text{quo}_p \lambda$ onto the set of cells in λ whose hook-lengths are divisible by p under which a cell of hook-length h in $\text{quo}_p \lambda$ is mapped to a cell of hook-length ph in λ.

In our example:

<table>
<thead>
<tr>
<th>10</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th>5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Recursive Criterion for odd Dimensionality

If n has binary expansion

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

and λ is a partition of n with $\text{core}_2\lambda$ of size a, and $\text{quo}_2\lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$),

Theorem (Macdonald)

f_λ is odd if and only if

- $\epsilon = a$,
- The binomial coefficient $\frac{n - \epsilon \cdot (2^{m_0} \cdot 2^{m_1})}{(n - \epsilon)!}$ is odd,
- f_μ_0 and f_μ_1 are odd.

Remark

The binomial coefficient $\binom{n}{k}$ is odd if and only if the binary digits of k and $n - k$ are in disjoint positions.
Recursive Criterion for odd Dimensionality

If n has binary expansion

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

and λ is a partition of n with $\text{core}_2 \lambda$ of size a, and $\text{quo}_2 \lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$),

Theorem (Macdonald)

f_λ is odd if and only if

- $a = \epsilon$,
- The binomial coefficient $\frac{(n-\epsilon)!}{(2m_0)!(2m_1)!}$ is odd,
- f_{μ_0} and f_{μ_1} are odd.
Recursive Criterion for odd Dimensionality

If n has binary expansion

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}, \text{ with } 0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\},$$

and λ is a partition of n with $\text{core}_2 \lambda$ of size a, and $\text{quo}_2 \lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$),

Theorem (Macdonald)

f_λ is odd if and only if

1. $a = \epsilon$,
2. The binomial coefficient $\frac{(n-\epsilon)!}{(2m_0)!(2m_1)!}$ is odd,
3. f_{μ_0} and f_{μ_1} are odd.

Remark

The binomial coefficient $\frac{n!}{k!(n-k)!}$ is odd if and only if the binary digits of k and $n-k$ are in disjoint positions.
Recursion of core and quotient construction: the core tower

If λ is a partition with core α and quotient μ_0 and μ_1, then its 2-core tower $T(\lambda)$ is a binary tree, defined recursively as follows:
Recursion of core and quotient construction: the core tower

If λ is a partition with core α and quotient μ_0 and μ_1, then its 2-core tower $T(\lambda)$ is a binary tree, defined recursively as follows:

$$T(\lambda) = \begin{cases} \text{core}_2 \lambda & \text{if } \lambda \text{ is a 2-core partition} \\ T(\mu_0) & \text{if } \mu_0 \text{ is the first quotient} \\ T(\mu_1) & \text{if } \mu_1 \text{ is the second quotient} \end{cases}$$
Example of 2-core tower

The 2-core tower of \((5, 4, 2, 2, 1, 1)\) is:

\[
\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset
\]

Let \(w_i(\lambda) = \) sum of sizes of entries in \(i\)th row. Here:

\(w_i(\lambda) = 1\) for \(i = 0, 1, 2, 3\), and 0 otherwise.
Example of 2-core tower

The 2-core tower of \((5, 4, 2, 2, 1, 1)\) is:
Example of 2-core tower

The 2-core tower of \((5, 4, 2, 2, 1, 1)\) is:

```
∅          (1)
∅          ∅
∅          ∅
∅          ∅
∅      (1)  ∅
∅      ∅    ∅
∅      ∅    ∅
∅    ∅    ∅    ∅    ∅    ∅    ∅    ∅
```

Let \(w_i(\lambda)\) = sum of sizes of entries in \(i\)th row. Here:

\(w_i(\lambda) = 1\) for \(i = 0, 1, 2, 3\), and 0 otherwise.
Example of 2-core tower

The 2-core tower of \((5, 4, 2, 2, 1, 1)\) is:

Let \(w_i(\lambda) = \) sum of sizes of entries in \(i\)th row.
Example of 2-core tower

The 2-core tower of $(5, 4, 2, 2, 1, 1)$ is:

Let $w_i(\lambda) = \text{sum of sizes of entries in } i\text{th row.}$
Here: $w_i(\lambda) = 1$ for $i = 0, 1, 2, 3$, and 0 otherwise.
Olsson’s criterion for \(f_\lambda \) being odd

Let \(\nu_i(n) \) be the \(i \)th digit in the binary expansion of \(n \).

So \(n = \sum_i 2^{\nu_i(n)} \).

Theorem

Let \(\lambda \) be a partition of \(n \). Then \(f_\lambda \) is odd if and only if

\[
\sum w_i(\lambda) = \sum \nu_i(n).
\]
Olsson’s criterion for f_λ being odd

Let $\nu_i(n)$ be the ith digit in the binary expansion of n.
Olsson’s criterion for f_λ being odd

Let $\nu_i(n)$ be the ith digit in the binary expansion of n. So $n = \sum_i 2^{\nu_i(n)}$.

Olsson’s criterion for f_{λ} being odd

Let $\nu_i(n)$ be the ith digit in the binary expansion of n. So $n = \sum_i 2^{\nu_i(n)}$.

Theorem

Let λ be a partition of n. Then f_{λ} is odd if and only if

$$\sum w_i(\lambda) = \sum \nu_i(n).$$
Example of 2-core tower

The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:

$$
\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset
$$

$f(\lambda)$ is odd.
Example of 2-core tower

The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:
Example of 2-core tower

The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:
The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:

\[f_\lambda \text{ is odd.} \]
Counting odd dimensional representations

Theorem (Macdonald, bijective proof via Olsson)

The number of partitions λ of n such that f_λ is odd is

$$2 \sum_i \nu_i(n).$$

To prove, count the possible 2-core towers.
Theorem (Macdonald, bijective proof via Olsson)
The number of partitions λ of n such that f_λ is odd is $2\sum_i i\nu_i(n)$.
Counting odd dimensional representations

Theorem (Macdonald, bijective proof via Olsson)
The number of partitions λ of n such that f_λ is odd is $2 \sum_i i \nu_i(n)$. To prove, count the possible 2-core towers.
\(n = 15 \)
The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks.
2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the ith row corresponds to a 2^i-rim hook.
2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the ith row corresponds to a 2^i-rim hook.

In the example of $(5, 4, 2, 2, 1, 1)$:
2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the ith row corresponds to a 2^i-rim hook.

In the example of $(5, 4, 2, 2, 1, 1)$:
Contents in a rim-hook

\[
C(h_3) = 2 \times 2^3 - \binom{2^3}{2}
\]
The head node contribution is even on the left side of the tree and odd on the right side.
2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which $v_2(f_{\lambda}) + v_2((n^2 - C(\lambda)) = v_2((n^2)$.

By carefully keeping track of the contributions of different rim-hooks, we were able to characterize the 2-core towers of chiral partitions.
2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

$$\nu_2(f_\lambda) + \nu_2\left(\binom{n}{2} - C(\lambda)\right) = \nu_2\left(\binom{n}{2}\right)$$
2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

$$v_2(f_\lambda) + v_2\left(\binom{n}{2} - C(\lambda)\right) = v_2\left(\binom{n}{2}\right)$$

By carefully keeping track of the contributions of different rim-hooks, we were able to characterize the 2-core towers of chiral partitions.
If \(n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r} \), with \(0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\} \). Then a partition \(\lambda \) of \(n \) is chiral if and only if one of the following happens:

1. The partition \(\lambda \) satisfies
 \[
 w_i(\lambda) = \begin{cases}
 1 & \text{if } i \in \{k_1, \ldots, k_r\}, \text{ or if } \epsilon = 1 \text{ and } i = 0, \\
 0 & \text{otherwise,}
 \end{cases}
 \]
 and the unique non-trivial partition in the \(k_1 \)th row of the 2-core tower of \(\lambda \) is \(\alpha_x \), where the binary sequence \(x \) of length \(k \) begins with \(\epsilon \). In this case \(f_{\lambda} \) is odd.

2. For some \(0 < v < k_1 \),
 \[
 w_i(\lambda) = \begin{cases}
 2 & \text{if } i = k_1 - v, \\
 1 & \text{if } k_1 - v + 1 \leq i \leq k_1 - 1 \text{ or } i \in \{k_2, \ldots, k_r\}, \\
 & \text{or if } \epsilon = 1 \text{ and } i = 0, \\
 0 & \text{otherwise,}
 \end{cases}
 \]
 and the two non-trivial partitions in the \((k - v) \)th row of the 2-core tower of \(\lambda \) are \(\alpha_x \) and \(\alpha_y \), for binary sequences \(x \) and \(y \) such that \(x \) begins with \(0 \) and \(y \) begins with \(1 \). In this case \(v_2(f_{\lambda}) = v \).

3. We have \(\epsilon = 1 \) and the partition \(\lambda \) satisfies
 \[
 w_i(\lambda) = \begin{cases}
 3 & \text{if } i = 0, \\
 1 & \text{if } i \in \{1, \ldots, k_1 - 1, k_2, \ldots, k_r\}.
 \end{cases}
 \]
 In this case, \(v_2(f_{\lambda}) = k_1 \).
Counting such towers gives:

If \(n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r} \), with \(0 < k_1 < \cdots < k_r, \epsilon \in \{0, 1\} \), then the number \(b_\nu(n) \) of chiral partitions \(\lambda \) of \(n \) for which \(\nu_2(f_\lambda) = \nu \) is given by

\[
b_\nu(n) = 2^{k_2+\cdots+k_r} \times \begin{cases}
2^{k_1-1} & \text{if } \nu = 0, \\
2^{(\nu+1)(k_1-2)-\binom{\nu}{2}} & \text{if } 0 < \nu < k_1, \\
\epsilon 2^{\binom{k_1}{2}} & \text{if } \nu = k, \\
0 & \text{if } \nu > k_1.
\end{cases}
\]
Counting such towers gives:

If \(n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r} \), with \(0 < k_1 < \cdots < k_r \), \(\epsilon \in \{0, 1\} \), then the number \(b_\nu(n) \) of chiral partitions \(\lambda \) of \(n \) for which \(\nu_2(f_\lambda) = \nu \) is given by

\[
b_\nu(n) = 2^{k_2 + \cdots + k_r} \times \left\{ \begin{array}{ll}
2^{k_1-1} & \text{if } \nu = 0, \\
2(\nu+1)(k_1-2)-\binom{\nu}{2} & \text{if } 0 < \nu < k_1, \\
\epsilon 2^{k_1-\nu} & \text{if } \nu = k, \\
0 & \text{if } \nu > k_1.
\end{array} \right.
\]

\[
b(n) = 2^{k_2 + \cdots + k_r} \left(2^{k_1-1} + \sum_{\nu=1}^{k_1-1} 2(\nu+1)(k_1-2)-\binom{\nu}{2} + \epsilon 2^{k_1-\nu} \right).
\]
Let $a(n)$ be the number of partitions of n for which f_λ is odd. Recall $b(n)$ is the number of chiral partitions of n.
Growth

Let $a(n)$ be the number of partitions of n for which f_λ is odd. Recall $b(n)$ is the number of chiral partitions of n.

$$a(n) = 2^{k_1 + \cdots + k_r},$$

$$b(n) = 2^{k_2 + \cdots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1 - 1} 2(v+1)(k_1 - 2) - \binom{v}{2} + \epsilon_2 \binom{k_1}{2} \right).$$
Comparison of $a(n)$ and $b(n + 2)$

$\frac{2}{5} \leq \frac{a(n)}{b(n + 2)} \leq 1.$
Growth

For all n:
\[n \leq a(n) \leq 2^{\log_2(n+1)(\log_2(n+1) - 1)/2} \]
Growth

For all n:

$$n \leq a(n) \leq 2^{\log_2(n+1)(\log_2(n+1)-1)/2}.$$

Hardy-Ramanujan formula:

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp(\pi \sqrt{2n/3}) \text{ as } n \to \infty.$$
Growth

For all n:

$$n \leq a(n) \leq 2^{\log_2(n+1)(\log_2(n+1)-1)/2}.$$

Hardy-Ramanujan formula:

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{2n/3}\right) \text{ as } n \to \infty.$$

So $a(n)/p(n) \to 0$, and $b(n)/p(n) \to 0$.
<table>
<thead>
<tr>
<th>n</th>
<th>$p(n)$</th>
<th>$b(n)$</th>
<th>$b(n) / p(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>190569292</td>
<td>6144</td>
<td>3.2240241518 × 10^{-05}</td>
</tr>
<tr>
<td>200</td>
<td>3972999029388</td>
<td>98304</td>
<td>2.47430213984 × 10^{-08}</td>
</tr>
<tr>
<td>300</td>
<td>9253082936723602</td>
<td>196608</td>
<td>2.12478372176 × 10^{-11}</td>
</tr>
<tr>
<td>400</td>
<td>6727090051741041926</td>
<td>2883584</td>
<td>4.28652504697 × 10^{-13}</td>
</tr>
<tr>
<td>500</td>
<td>230016503257432395027</td>
<td>3221225472</td>
<td>1.40643232828 × 10^{-12}</td>
</tr>
<tr>
<td>600</td>
<td>458004788008144308553622</td>
<td>6291456</td>
<td>1.37366598881 × 10^{-17}</td>
</tr>
<tr>
<td>700</td>
<td>60378285202834474611028659</td>
<td>805306368</td>
<td>1.33376820043 × 10^{-17}</td>
</tr>
<tr>
<td>800</td>
<td>5733052172321422504456911979</td>
<td>178257920</td>
<td>3.10930224673 × 10^{-20}</td>
</tr>
<tr>
<td>900</td>
<td>415873681190459054784114365430</td>
<td>50331648</td>
<td>1.21026288213 × 10^{-22}</td>
</tr>
<tr>
<td>1000</td>
<td>24061467864032622473692149727991</td>
<td>412316860416</td>
<td>1.71359811773 × 10^{-20}</td>
</tr>
<tr>
<td>1100</td>
<td>1147240591519695580043346988281283</td>
<td>1572864</td>
<td>1.37099751493 × 10^{-27}</td>
</tr>
<tr>
<td>1200</td>
<td>46240102378152881298913555099661657</td>
<td>369098752</td>
<td>7.98222177325 × 10^{-27}</td>
</tr>
<tr>
<td>1300</td>
<td>1607818855017534550841511230454411672</td>
<td>12582912</td>
<td>7.82607565568 × 10^{-30}</td>
</tr>
<tr>
<td>1400</td>
<td>4903219465255039477439040691532998261</td>
<td>103079215104</td>
<td>2.10227618475 × 10^{-27}</td>
</tr>
<tr>
<td>1500</td>
<td>1329461690763193888825263136701868691117</td>
<td>824633720832</td>
<td>6.20276407031 × 10^{-28}</td>
</tr>
<tr>
<td>1600</td>
<td>324176903761542421824102577250721959572183</td>
<td>22699573248</td>
<td>7.0022179201 × 10^{-31}</td>
</tr>
<tr>
<td>1700</td>
<td>7178020419649414424786815116751205185010007</td>
<td>6442450944</td>
<td>8.97524744617 × 10^{-33}</td>
</tr>
<tr>
<td>1800</td>
<td>14552716211005418005132948684850541312590849</td>
<td>1610612736</td>
<td>1.10674372581 × 10^{-34}</td>
</tr>
<tr>
<td>1900</td>
<td>272089289788583262011466359201428623427767364</td>
<td>659706976666</td>
<td>2.42459737068 × 10^{-32}</td>
</tr>
</tbody>
</table>
Representations of symmetric groups with non-trivial determinant

Arvind Ayyer, Amitanshu Prasad, Steven Spallone

(Submitted on 29 Apr 2016)

We give a closed formula for the number of partitions λ of n such that the corresponding irreducible representation S_n^λ of S_n has non-trivial determinant. We determine how many of these partitions are self-conjugate and how many are hooks. This is achieved by characterizing the 2-core towers of such partitions. We also obtain a formula for the number of partitions of n such that the associated permutation representation of S_n has non-trivial determinant.

Comments: 22 pages, 4 figures
Subjects: Representation Theory (math.RT); Combinatorics (math.CO)
MSC classes: 05E10, 20C30, 05A17, 05A15
Cite as: arXiv:1604.08837 [math.RT]
(or arXiv:1604.08837v1 [math.RT] for this version)

Submission history
From: Amitanshu Prasad [View email]
[v1] Fri, 29 Apr 2016 14:03:35 GMT (136kb,D)