Permutations(4)
S4 = Permutations(4)
list(S4)
w = Permutations(4)[3]
w
u = Permutation([3, 4, 1, 2])
u*w
w.cycle_type()
u.cycle_tuples()
Partitions(5)
list(Partitions(5))
for la in Partitions(5):
print la, la.conjugate()
la = Partition([3,3,3])
la.dimension()
StandardTableaux(la)
S = StandardTableaux([3, 3, 3])
S.cardinality()
T = S[5]; T
T.column_stabilizer()
T.schuetzenberger_involution()
la = Partition([3, 2, 1])
SymmetricGroupRepresentation(la)
V = SymmetricGroupRepresentation(la)
w = Permutations(6).random_element(); w
V.representation_matrix(w)
V = SymmetricGroupRepresentation([3, 2, 1], implementation='seminormal')
V.representation_matrix(w)
A = V.representation_matrix(w)
w.cycle_type()
A^6
symmetrica.charvalue([3, 2, 1], [3, 3])
symmetrica.chartafel(3)
symmetrica.kostka_number([3, 3], [3, 2, 1])
symmetrica.kostka_tab([3, 1], [2, 1, 1])
symmetrica.kostka_tafel(3)
S = SymmetricFunctions(ZZ)
s = S.schur()
h = S.complete()
e = S.elementary()
p = S.powersum()
m = S.monomial()
M = lambda n: Matrix([[m(h[la]).coefficient(mu) for mu in Partitions(n)] for la in Partitions(n)]); M(3)
N = lambda n: Matrix([[m(e[la]).coefficient(mu) for mu in Partitions(n)] for la in Partitions(n)]); N(3)
K = lambda n: Matrix([[s(h[mu]).coefficient(la) for mu in Partitions(n)] for la in Partitions(n)]); K(5)
J = lambda n: Matrix([[int(la==mu.conjugate()) for mu in Partitions(n)] for la in Partitions(n)]); J(3)
P = lambda n: Matrix([[m(p[la]).coefficient(mu) for mu in Partitions(n)] for la in Partitions(n)]); P(3)
M(5), K(5).transpose()*K(5)
X = lambda n: Matrix([[s(p[mu]).coefficient(la) for mu in Partitions(n)] for la in Partitions(n)]); X(3)
P(5), X(5).transpose()*K(5)
s(s[2, 1]*s[1])
The Littlewood-Richardson coefficient $^\lambda_{\mu\nu}$ is the coefficient of $s_\lambda$ in the expansion of $s_\lambda s_\mu$ in terms of Schur functions.
def littlewood_richardson_coefficient(la, mu, nu):
return s(s[mu]*s[nu]).coefficient(la)
littlewood_richardson_coefficient([3, 2, 1], [2, 1], [2, 1])