# Each line is of the form (key, A, B), where ``key`` is a string # describing the isoclinism family, ``A`` and ``B`` are nromalized # rational functions A_G(t/|G|) and B_G(t/|G|) associated to the # family ('abelian', 1/(1-t), 1/(1-t)) ('phi2', (1-p**(-2))/(1-p**(-1)*t)+p**(-2)/(1-t), (-p)**(-1)/(1-p**(-2)*t)+(1+p**(-1))/(1-p**(-1)*t)) ('phi3', (1-p**(-1))/(1-p**(-2)*t)+(p**(-1)-p**(-3))/(1-p**(-1)*t)+p**(-3)/(1-t), -p**(-1)/(1-p**(-3)*t)+1/(1-p**(-2)*t)+p**(-1)/(1-p**(-1)*t)) ('phi4', (1-p**(-1))/(1-p**(-2)*t)+(p**(-1)-p**(-3))/(1-p**(-1)*t)+p**(-3)/(1-t), -p**(-1)/(1-p**(-3)*t)+1/(1-p**(-2)*t)+p**(-1)/(1-p**(-1)*t)) ('phi5', (1-p**(-4))/(1-p**(-1)*t)+p**(-4)/(1-t), 1/(1-p**(-4)*t)+(-p-1-p**(-1)-p**(-2))/(1-p**(-3)*t)+(p+1+p**(-1)+p**(-2))/(1-p**(-2)*t)) ('phi6', (1-p**(-3))/(1-p**(-2)*t)+p**(-3)/(1-t), (-p**(-1)-p**(-2))/(1-p**(-3)*t)+(1+p**(-1)+p**(-2))/(1-p**(-2)*t)) ('phi7', (1-p**(-2))/(1-p**(-2)*t)+(p**(-2)-p**(-4))/(1-p**(-1)*t)+p**(-4)/(1-t), (-p**(-1)-p**(-2))/(1-p**(-3)*t)+(1+p**(-1)+p**(-2))/(1-p**(-2)*t)) ('phi8', (1-p**(-2))/(1-p**(-2)*t)+(p**(-2)-p**(-4))/(1-p**(-1)*t)+p**(-4)/(1-t), (-p**(-1)-p**(-2))/(1-p**(-3)*t)+(1+p**(-1)+p**(-2))/(1-p**(-2)*t)) ('phi9', (1-p**(-1))/(1-p**(-3)*t)+(p**(-1)-p**(-4))/(1-p**(-1)*t)+p**(-4)/(1-t), (-p**(-1))/(1-p**(-4)*t)+1/(1-p**(-3)*t)+p**(-1)/(1-p**(-1)*t)) ('phi10', (1-p**(-1))/(1-p**(-3)*t)+(p**(-1)-p**(-3))/(1-p**(-2)*t)+(p**(-3)-p**(-4))/(1-p**(-1)*t)+p**(-4)/(1-t), -p**(-1)/(1-p**(-4)*t)+(1-p**(-2))/(1-p**(-3)*t)+(p**(-1)+p**(-2))/(1-p**(-2)*t))