COMPLEX ANALYSIS

HOMEWORK 3

(1) For any polynomial p(z), any $c \in \mathbb{C}$, $r \in \mathbb{R}^+$,

$$\int_{\partial B_r(c)} \overline{p(\xi)} d\xi = 2\pi i r^2 \overline{p'(c)}.$$

(2) Let

$$f(z) = \frac{z}{e^z - 1}.$$

What is the set on which f is holomorphic? For each point $c \in \mathbf{C}$ where f is non holomorphic, compute $\lim_{z \to c} (z - c) f(z)$.

- (3) Let $\Omega \subset \mathbf{C}$ be an open set, and $f_n : \Omega \to \mathbf{C}$ be a sequence of functions, all of which have a primitive on Ω . Suppose that $f_n \to f$ uniformly on compact sets. Show that f has a primitive on Ω .
- (4) Let G_1 and G_2 be open subsets of \mathbb{C} with $G_1 \cap G_2$ connected. Suppose $f: G_1 \cup G_2 \to \mathbb{C}$ is continuous such that $\int_{\gamma} f dz = 0$ for every closed path $\gamma \in G_1$ and for every closed path $\gamma \in G_2$. Show that this equality holds for every closed path γ in $G_1 \cup G_2$ as well.
- (5) Let r > 0, D be an open neighborhood of $\overline{B_r(0)}$, $f: D \to \mathbb{C}$ a holomorphic function, a_1 , a_2 distinct points of $B_r(0)$.
 - holomorphic function, a_1 , a_2 distinct points of $B_r(0)$. (a) Express $\int_{\partial B_r(0)} \frac{f(\xi)d\xi}{(\xi-a_1)(\xi-a_2)}$ in terms of $\int_{\partial B_r(0)} \frac{f(\xi)d\xi}{\xi-a_i}$, i=1,2.
 - (b) Use the previous part of this exercise to deduce Liouville's theorem: Every bounded holomorphic function on C is constant.
- (6) Let r > 0 and $f : \overline{B_r(0)} \to \mathbf{C}$ be a continuous function which is holomorphic on $B_r(0)$. Show that

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(\xi)d\xi}{\xi - z} \text{ for all } z \in B_r(0).$$

Note that we are integrating on the *boundary* of a region of holomorphy.