COMPLEX ANALYSIS

HOMEWORK 12

(1) What is the orbit of i under the action of the subgroup of $PSL_2(\mathbf{R})$ given by matrices of the form:

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \theta \in \mathbf{R},$$

and under the subgroup of diagonal matrices?

- (2) Give a complete set of representatives (exactly one for each orbit) for the orbits of the action of $PSL_2(\mathbf{R})$ on $H \times H$ (with the diagonal action).
- (3) Let Γ_1 and Γ_2 be lattices in \mathbf{C} . Say that the elliptic curve \mathbf{C}/Γ_1 is isomorphic to \mathbf{C}/Γ_2 if and only if there exists a biholomorphic map $\phi: \mathbf{C} \to \mathbf{C}$ such that $\phi(\Gamma_1) = \Gamma_2$. For each z in the upper half plane H, let Γ_z be the lattice generated by z and 1 in \mathbf{C} . Show that every elliptic curve is isomorphic to a unique elliptic curve of the form \mathbf{C}/Γ_z , for $z \in PSL_2(\mathbf{Z})\backslash H$.
- phic to a unique elliptic curve of the form \mathbb{C}/Γ_z , for $z \in PSL_2(\mathbb{Z})\backslash H$. (4) Let Γ be any lattice in \mathbb{C} . Prove that $\sum_{\gamma \in \Gamma - \{0\}} \gamma^{-2k}$ converges absolutely for k > 1.
- (5) Let G_k denote the Eisenstein series of weight 2k. Let $g_2 = 60G_2$, and $g_3 = 140G_3$. Using the fact that $G_k(\infty) = 2\zeta(2k)$, and your knowledge of even values of the Riemann zeta function, conclude that $\Delta = g_2^3 27g_3^2$ is a cusp form of weight 12.

1