COMPLEX ANALYSIS

HOMEWORK 10

(1) In information theory, a discrete channel is a system whereby a word in an alphabet $\{S_1, \ldots, S_n\}$ is transmitted from one point to another. Assume that the transmission of S_i takes t_i seconds. For a non-negative integer t, let N(t) denote the total number of possible words that can be transmitted in t seconds. Show that

$$N(t) = N(t - t_1) + N(t - t_2) + \dots + N(t - t_n).$$

Use the above recurrence relation to compute the (rational) generating function $f(z) = \sum_{n=0}^{\infty} N(t)z^{t}$. Let X_0 be the largest real solution to the equation:

$$X^{-t_1} + X^{-t_2} + \dots + X^{-t_n} = 1.$$

The *capacity* of the channel is defined as:

$$C = \lim_{T \to \infty} \frac{\log N(T)}{T}.$$

Show that $C = \log X_0$.

(2) Explicitly compute a_n in terms of n when

$$\sum_{n=0}^{\infty} a_n z^n = \frac{1}{1 - z^2} \frac{1}{1 - z^3}.$$

- (3) Explicitly compute p(n,3) as a function of n (for example, p(n,2) = n/2 + 1 if $n \equiv 0 \mod 2$, and (n+1)/2 if $n \equiv 1 \mod 2$).
- (4) India has coins in denominations 1, 2, 5, and 10. Estimate (asymptotically) the number of distinct ways of paying a sum of n rupees, entirely in these coins, for n very large.

Date: Due on 24th October 2018.

¹Claude Shannon, A Mathematical theory of Information, *The Bell System Technical Journal*, vol. 27, 1948.