MID-TERM EXAMINATION

ANALYSIS I

(1) Show that the set

$$\{nx - m \mid m, n, \in \mathbf{Z}\}\$$

is dense in \mathbf{R} if and only if x is irrational.

(2) Suppose

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$
 for all $|z - a| < R$.

Show that for any complex number b such that |b-a| < R, f(z) has a power series expansion about the point b which is valid for |z-b| < R-|b-a|. Conclude that the function f(z) is analytic on $\{z: |z-a| < R\}$.

(3) Find a sequence $\{f_n\}$ of Riemann-integrable real-valued functions on [0, 1] which converge point-wise to 0 but for which

$$\lim_{n\to\infty}\int_0^1f_n(x)dx\neq 0.$$

(4) Let $f:[a,b]\to \mathbf{R}$ be a continuous function taking positive values. Let M denote the maximum value of f on [a,b]. Show that

$$\lim_{n\to\infty}\left(\int_a^b|f(x)|^ndx\right)^\frac{1}{n}=M.$$

(5) Suppose that the series $\sum a_n$ of positive terms is divergent. Construct a divergent series $\sum b_n$ of positive terms such that $\lim_{n\to\infty}(b_n/a_n)=0$.