HOMEWORK IX

ANALYSIS I

(1) Show that if f is a periodic function on \mathbf{R} with period 2π and Riemann integrable on $[-\pi, \pi]$ and g is defined by

$$g(x) = c + f(x+s)$$

where c is complex and s is real, then $c_n(g) = c_n(f)e^{nis}$ for all $n \neq 0$ and $c_0(g) = c_0(f) + c$ (here $c_n(f)$ and $c_n(g)$ denote the nth Fourier coefficient of f and g respectively).

- (2) Calculate the Fourier series of the periodic functions whose values on $[-\pi, \pi]$ are given by
 - (a) f(x) = -1 for $-\pi \le x \le 0$ and f(x) = 1 for $0 < x < \pi$.
 - (b) $g(x) = x + \pi$ for $-\pi \le x \le 0$ and $g(x) = x \pi$ for $0 < x < \pi$.
 - (c) $h(x) = (1 re^{ix})^{-1}$, where 0 < r < 1.
- (3) Define

$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \quad g(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt.$$

- (a) Show that g'(x) + f'(x) = 0 for all x and deduce that $g(x) + f(x) = \pi/4$.
- (b) Use (a) to prove that

$$\int_0^\infty e^{-t^2} dt = \frac{1}{2} \sqrt{\pi}.$$

[Use the definition $\int_0^\infty = \lim_{x \to \infty} \int_0^x$.]