HOMEWORK VII

ANALYSIS I

- (1) Show that the quadratic polynomial $ax^2 + bx + c$ is convex if and only if a > 0.
- (2) Let $\{a_n\}$ be a sequence of real numbers. Prove or disprove: Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for all -R < x < R for some R > 0. Then f(x) is a convex function on (-R, R) if and only if $a_2 \ge 0$.
- (3) Show that

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + C + O\left(\frac{1}{n}\right),$$

where C denotes Euler's constant.

(4) Show that

$$\sum_{k=1}^{n} \frac{1}{k^s} = \frac{n^{1-s} - 1}{1-2} + C(s) + O\left(\frac{1}{n^s}\right),$$

where

$$C(s) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k^s} - \frac{n^{1-s} - 1}{1 - s} \right).$$

In particular the latter limit exists.

- (5) If f(x) is convex and continuous, and there exist a < b < c such that f(a) = f(b) = f(c) then f(x) is constant on (a, c).
- (6) Suppose f(x) is a convex function on $(0, \infty)$. Let g(x) = f(x)/x. Show that either g(x) is monotonic, or the graph of g(x) consists of two monotonic pieces.
- (7) If f(x) is a continuous function and every chord (or secant line) of its graph meets the graph in a point distinct from its endpoints then f(x) is a linear function.
- (8) If f(x) is convex and -f(x) is convex then f(x) is a linear function.
- (9) An increasing convex function of a convex function is convex.
- (10) If f(x) is continuous for x > 0 and one of xf(x) and f(1/x) is convex then so is the other.

Date: due on 14th October 2005.