HOMEWORK V

ANALYSIS I

(1) Let F(a,b,c;z) denote the hypergeometric function with parameters a,b, c. Show that
e* = ﬁlim F(1,5,1;2/0).

(2) Show that for complex numbers a, b, ¢,
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(3) Show that for real numbers o/, ¥, ¢, a”,b"”,c",
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(4) Show that for all complex numbers |z| < 1, the function f(z) given by the power series
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(5) Prove that

(ma,....;mr)€Z7—{(0,...,0)}
is absolutely convergent if p > %7’. (In the case of a positive series, the multiple sum exists if and
only if any iterated sum converges, so you may work with an iterated sum in this problem).

(6) Show that for ¢t > 0
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(7) (Stirling) Use the previous exercise to convert
1 1 1
2 (t+1)2 * (t+2)
into a double series, and transform it to
1 1 1-2 1-2-3
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Take t = 10 and so calculate ((2) = >_ -5 to seven decimal places (of course, you may use a calculator
for this).
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Date: due on 12th September 2005.



