HOMEWORK IV

ANALYSIS I

- (1) Show that \mathbf{R} is a connected topological space.
- (2) Suppose S is any subset of **R** such that there exist real numbers x < y < z such that $x, z \in S$ and $y \notin S$. Show that S is not connected. Thus the only connected subsets of **R** are intervals (this includes open, closed, half open and infinite intervals).
- (3) Show that 1/(z-a) is an analytic function on $\mathbb{C} \setminus \{a\}$.
- (4) Prove or give a counterexample: given any array $\{a_{m,n}\}$ of complex numbers, the double series $\sum a_{m,n}$ converges if and only if the iterated series

$$\sum_{k=1}^{\infty} \sum_{i=1}^{k} a_{i,k-i}$$

converges, and then the two sums are equal.

- Show that if $\sum a_{m,n}$ converges absolutely (i.e., the double series of absolute values converges), then the sums by rows and sums by columns exist, and are equal.
- (6) (Apostol's Mathematical Analysis, p.424, Ex. 13-6) Let $\{f_n\}$ be a sequence of continuous functions defined on a compact set S and assume that $\{f_n\}$ converges point-wise on S to a limit function f. Show that $f_n \to f$ uniformly on S, if and only if, the following two conditions hold:
 - (a) The limit function f is continuous on X.
 - (b) For every $\epsilon > 0$, there exists an m > 0 and a $\delta > 0$ such that n > m and $|f_k(x) f(x)| < \delta$ implies $|f_{k+n}(x) - f(x)| < \epsilon$ for all $x \in S$ and all $k = 1, 2, \ldots$

Hint: To prove the sufficiency of (a) and (b), show that for each x_0 in S there exists $\theta > 0$ and an integer k (depending on x_0) such that

$$|f_k(x) - f(x)| < \delta \text{ if } |x - x_0| < \theta.$$

By compactness, a finite set of integers, say $A = \{k_1, \dots, k_r\}$, has the property that, for each $x \in S$, some k in A satisfies $|f_k(x) - f(x)| < \delta$. Uniform convergence is an easy consequence of this fact.

- (7) (Due to Dini, see loc. cit. Ex. 13-7) Use the previous exercise to prove that it $\{f_n\}$ is a sequence of real-valued functions converging point-wise to a continuous limit f on a compact set S, and if $f_n(x) \ge f_{n+1}(x)$ for each $x \in S$ and every $n \in \mathbb{N}$, then $f_n \to f$ uniformly on S.
- (8) Let $f_n(x) = 1/(nx+1)$ for $x \in (0,1)$, $n \in \mathbb{N}$. Show that $\{f_n\}$ converges point-wise but not uniformly on (0,1).

[This example demonstrates that the compactness of S is essential in the previous exercise]

(9) Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two convergent series and let $c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0$. If $\sum_{n=0}^{\infty} c_n$ converges then show that

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

[Hint: Use the theorem on products of power series to show that $\sum_{n=0}^{\infty} c_n x^n$ converges for $x \in (-1,1)$. Then use Abel's on continuity up to the circle of convergence.]

(10) Assume that $f(x) = \sum a_n x^n$ converges for |x| < 1. If each $a_n \ge 0$ and if $\sum a_n$ diverges, show that

$$\lim_{x \to 1-} f(x) = \infty.$$

Date: due on 5th September 2005.