HOMEWORK III

ANALYSIS I

(1) Show that the following set K is compact:

K:{% neN}U{O}.

(2) Let E be the set of real numbers between 0 and 1 whose decimal expansion contains
only the digits 4 and 7. Is E countable? Is it dense in [0, 1]? Is it compact?
(3) Investigate the convergence of the series
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(4) Show that when s > 1,
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and show that the series on the right converges when 0 < s < 1.

(5) It
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(6) Find a countable family of open sets in R such that every open subset of R can be
written as a union of sets in this family. This is known as the second countability
property in topology.

(7) Let X be the space of all bounded functions f : [0,1] — C. For f,¢g € X define

d(f,g) = sup{[f(z) —g(z)| : = €[0,1]}.
Show that d gives X the structure of a metric space.

(8) Does X from the previous problem have a countable dense subset?

(9) Does there exist an uncountable family {U,} of subsets of N such that any two sets
in the family (a) are disjoint, (b) have only a finite number of elements in their

intersection?
(10) If K and K, are compact subsets of R then

K={z+iy|ze Kyandy € Ky} CC
is a compact set.

Date: due on 26th August 2005.



