FINAL EXAMINATION

ANALYSIS I

(1) (a) Prove that the series

$$X = \frac{1}{x} + \sum_{n \in Z \setminus \{0\}} \left(\frac{1}{n} + \frac{1}{x - n} \right)$$

converges whenever x is not an integer.

(b) Show that

$$\lim \left(\sum_{-p}^{q} \frac{1}{x-n}\right) - X = -\log k,$$

where p and q tend to ∞ in such a way that $\lim(q/p) = k$.

(2) For continuous 2π -periodic functions f, g : $\mathbf{R} \to \mathbf{C}$ let f * g be the function given by

$$(f*g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)g(t)dt.$$

Show that f * g is 2π -periodic and continuous, and that the Fourier coefficients of f * g are given by

$$c_{\mathfrak{n}}(f*\mathfrak{g})=c_{\mathfrak{n}}(f)c_{\mathfrak{n}}(\mathfrak{g}) \text{ for all } \mathfrak{n}\in \textbf{Z}.$$

(3) (a) Show that

$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \int_0^1 \frac{1 - (1 - t)^n}{t} dt.$$

(b) Show that Euler's constant γ is given by

$$\lim_{n\to\infty} \left[\int_0^1 \left\{ 1 - \left(1 - \frac{t}{n}\right)^n \right\} \frac{dt}{t} - \int_1^n \left(1 - \frac{t}{n}\right)^n \frac{dt}{t} \right]$$

(4) (a) Let

$$u_n = \frac{(n+a_1)(n+a_2)\cdots(n+a_k)}{(n+b_1)(n+b_2)\cdots(n+b_l)}.$$

Show that if the infinite product $\prod_{n=1}^{\infty} u_n$ converges, then k = l and $a_1 + \cdots + a_k = b_1 + \cdots + b_1.$

(b) When these conditions are satisfied², show that

$$\prod_{n=1}^\infty u_n = \frac{\Gamma(1+b_1)\Gamma(1+b_2)\cdots\Gamma(1+b_l)}{\Gamma(1+\alpha_1)\Gamma(1+\alpha_2)\cdots\Gamma(1+\alpha_k)}.$$

Date: 2nd December 2005.