FINAL EXAMINATION

ANALYSIS I

(1) (a) Prove that the series
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converges whenever x is not an integer.
(b) Show that

q
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where p and q tend to oo in such a way that lim(q/p) = k.

(2) For continuous 27-periodic functions f, g : R — C let f * g be the function

given by

] 7T
(fxg)x) = I J_ﬁ f(x —t)g(t)dt.
Show that f g is 27-periodic and continuous, and that the Fourier coeffi-
cients of f x g are given by
cn(fxg) =cn(flcn(g) foralln € Z.

(3) (a) Show that
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(b) Show that Euler’s constant! vy is given by
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Show that if the infinite product [[};_; un converges, then k = 1 and
ay+---+ag=by+---+by.
(b) When these conditions are satisfied?, show that
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(4) (a) Let
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IRecall that vy =limm 00 {1+2" 1 +--- +m! —log m}.

2Recall that M(x) = limn — o0 X(H;)’—(‘nnjw
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