HOMEWORK VIII

ANALYSIS I

(1) Show that the integral [, sin(z?)da converges.
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is a continuous function of a.

(2) If a is real, show that

(3) If on an interval [a,b] the function f(z) is continuous and ¢ a Riemann
integrable function such that ¢(z) > 0 for all z show that there exists
& € [a, b] such that
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Construct an example to show that the hypothesis ¢(z) > 0 is necessary.

(4) By writing |¢(x) — ¢(b)] in place of ¢(x) in Bonnet’s version of the mean
value theorem show that if ¢(z) is a monotonic function, then a number £
exists such that a < £ < b and
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(5) Show that [ ®22dz converges. What about [~ S22 dz?

(6) Recall that v denotes Euler’s constant [Homework VII, (1) and (4)]. Show
that
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[Hint: First show that 1+ 4 + 2 4. 4 2 = [ 120200 g |

(7) Show (justifying all the steps) that
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Date: due on 19 October 2004.



