HOMEWORK VIII

ANALYSIS I

- (1) Show that the integral $\int_0^\infty \sin(x^2) dx$ converges.
- (2) If a is real, show that

$$\int_0^\infty \frac{\cos(ax)}{1+x^2} dx$$

is a continuous function of a.

(3) If on an interval [a, b] the function f(x) is continuous and ϕ a Riemann integrable function such that $\phi(x) \ge 0$ for all x show that there exists $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x)\phi(x)dx = f(\xi)\int_{a}^{b}\phi(x)dx.$$

Construct an example to show that the hypothesis $\phi(x) \ge 0$ is necessary.

(4) By writing $|\phi(x) - \phi(b)|$ in place of $\phi(x)$ in Bonnet's version of the mean value theorem show that if $\phi(x)$ is a monotonic function, then a number ξ exists such that $a \leq \xi \leq b$ and

$$\int_{a}^{b} f(x)\phi(x)dx = \phi(a)\int_{a}^{\xi} f(x)dx + \phi(b)\int_{\xi}^{b} f(x)dx.$$

- (5) Show that $\int_1^\infty \frac{\sin x}{x} dx$ converges. What about $\int_0^\infty \frac{\sin x}{x} dx$?
- (6) Recall that γ denotes *Euler's constant* [Homework VII, (1) and (4)]. Show that

$$\gamma = \lim_{n \to \infty} \left[\int_0^1 \left\{ 1 - \left(1 - \frac{t}{n} \right)^n \right\} \frac{dt}{t} - \int_1^n \left(1 - \frac{t}{n} \right)^n \frac{dt}{t} \right].$$

[Hint: First show that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \int_0^1 \frac{1 - (1 - t)^n}{t} dt.$]

(7) Show (justifying all the steps) that

$$\gamma = \int_0^1 \frac{1 - e^{-t}}{t} dt - \int_1^\infty \frac{e^{-t}}{t} dt.$$

Date: due on 19 October 2004.