HOMEWORK VI

ANALYSIS I

(1) A function f : N — C is called multiplicative if for any positive integers
m and n whose greatest common divisor is one, f(mn) = f(m)f(n) and
completely multiplicative if for any positive integers m and n, f(mn) =
f(m)f(n). Prove the following theorem, discovered by Euler in 1737:

Let f: N — C be a multiplicative function such that the series > f(n) is
absolutely convergent. Then the sum of the series can be expressed as an
absolutely convergent product:
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where the product ranges over all prime numbers p. If f is completely
multiplicative then the product simplifies and
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(2) Show that the infinite product over all primes Hp(l_i;,l) does not converge.

(3) Let {a,} be a sequence of positive numbers. Show that if [[>~ (1 + ay,)
converges, then so does Y7, log(1+a,) (the converse was proved in class).

(4) Since cos(37) = 0, it must be that sin(47) = +1. Using only the definitions
and results we have proved in class show that sin(37) = +1, not —1.

(5) Verify the identity
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Show that as n tends to oo, the product diverges for all values of x except
0, but the series converges, provided that x > 0.
(6) Prove that (1 +2)(1+2?)(1+2Y)(1+28)---=1/(1 — ), if |z| < 1.
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Date: due on 21 September 2004.



