HOMEWORK VI

ANALYSIS I

(1) A function $f : \mathbf{N} \to \mathbf{C}$ is called *multiplicative* if for any positive integers m and n whose greatest common divisor is one, f(mn) = f(m)f(n) and completely multiplicative if for any positive integers m and n, f(mn) =f(m)f(n). Prove the following theorem, discovered by Euler in 1737: Let $f : \mathbf{N} \to \mathbf{C}$ be a multiplicative function such that the series $\sum f(n)$ is absolutely convergent. Then the sum of the series can be expressed as an absolutely convergent product:

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \{1 + f(p) + f(p^2) + \dots \}$$

where the product ranges over all prime numbers p. If f is completely multiplicative then the product simplifies and

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \frac{1}{1 - f(p)}.$$

(2) Show that the infinite product over all primes $\prod_p (\frac{1}{1-p^{-1}})$ does not converge.

- (3) Let {a_n} be a sequence of positive numbers. Show that if ∏_{n=1}[∞](1 + a_n) converges, then so does ∑_{n=1}[∞] log(1+a_n) (the converse was proved in class).
 (4) Since cos(¹/₂π) = 0, it must be that sin(¹/₂π) = ±1. Using only the definitions
- and results we have proved in class show that $\sin(\frac{1}{2}\pi) = +1$, not -1.
- (5) Verify the identity

$$\left(1 - \frac{x}{1}\right) \left(1 - \frac{x}{2}\right) \cdots \left(1 - \frac{x}{n}\right)$$

= $1 - x + \frac{x(x-1)}{2!} - \frac{x(x-1)(x-2)}{3!} + \cdots + (-1)^n \frac{x(x-1) \cdot (x-n+1)}{n!}$

Show that as n tends to ∞ , the product diverges for all values of x except 0, but the series converges, provided that x > 0.

(6) Prove that $(1+x)(1+x^2)(1+x^4)(1+x^8)\cdots = 1/(1-x)$, if |x| < 1.

Date: due on 21 September 2004.