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HOMEWORK III

ANALYSIS I

Given any real number z construct a rearrangement of the conditionally
convergent series —1 + % — % + % that converges to x (recall that a
rearrangement of the series ) a, is a series of the form ) a,(,) where
o : N — N is a bijection).
Investigate the convergence of the series
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Show that when s > 1,
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and show that the series on the right converges when 0 < s < 1.
If
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m,n = om+n il s for m,n > 0,

amo=2"", apn =—-2"", and agp =0

show that

m=0 \n
Given z,y € R (or C-the proof is essentially the same) show that there
exist up en sets U and V such that x € U, y € V and U NV = . This is
known as the Hausdorff property in topology.
Find a countable family of open sets in R such that every open subset of
R can be written as a union of sets in this family. This is known as the
second countability property in topology.
Do the same for C.
True or false? Every compact subset of R is a finite union of sets of closed
intervals [a, b] with a < b (give proof/counterexample).
Does there exist an uncountable family {U,} of subsets of N such that any
two sets in the family
(a) are disjoint.
(b) have only a finite number of elements in their intersection?
If K1 and K5 are compact subsets of R then

K={z+iy|re K,andy € K>} CC

is a compact set.
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