HOMEWORK XI

ANALYSIS I

(1) Show that if f is a periodic function on **R** with period 2π and Riemann integrable on $[-\pi,\pi]$ and g is defined by

$$g(x) = c + f(x+s)$$

where c is complex and s is real, then $c_n(g) = c_n(f)e^{nis}$ for all $n \neq 0$ and $c_0(g) = c_0(f) + c$ (here $c_n(f)$ and $c_n(g)$ denote the *n*th Fourier coefficient of f and g respectively).

- (2) Calculate the Fourier series of the periodic functions whose values on $[-\pi, \pi]$ are given by
 - (a) f(x) = -1 for $-\pi \le x \le 0$ and f(x) = 1 for $0 < x < \pi$.
 - (b) $g(x) = x + \pi$ for $-\pi \le x \le 0$ and $g(x) = x \pi$ for $0 < x < \pi$. (c) $h(x) = (1 re^{ix})^{-1}$, where 0 < r < 1.
- (3) Suppose $0 < \delta < \pi$, f(x) = 1 if $|x| < \delta$, f(x) = 0 if $\delta < x \le |\pi|$ and f is 2π -periodic,
 - (a) Compute the Fourier coefficients of f.
 - (b) Conclude that

$$\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n} = \frac{\pi - \delta}{2}.$$

(c) Deduce from Parseval's theorem that

$$\sum_{n=1}^{\infty} \frac{\sin^2(n\delta)}{n^2\delta} = \frac{\pi - \delta}{2}$$

(d) Let $\delta \to 0$ and prove that

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}.$$

- (e) Put $\delta = \frac{\pi}{2}$ in (3c). What do you get?
- (4) Let f be the 2π -periodic function for which f(x) = x for $0 \le x < 2\pi$. Apply Parseval's theorem and conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Date: due on 23 November 2004.