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The Monoid of Words

The Alphabet

An=A{1,...,n}
This is an ordered alphabet.

The Monoid of Words

Af,:{al‘--a,\lzo, a,'EAn}.

Product: concatentation of words.
Unit: the empty word .

Subwords

W =aj---4a

w’:a,-l---a,-k, 1<ip<---<ip <Ll

Then w' is said to be a subword of w.
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The Longest Increasing Subword Problem

Problem
Given a word w € A}, determine the length of the longest weakly
increasing subword of w.

Schensted’s one-pass algorithm

Idea: read the word from left to right, keeping track of the least
last element the longest increasing subword of length r for each r.
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Schensted's algorithm by example

p=1115
w’ = 353224

The length of the longest increasing subword of w = 3523245111
is 4.

The shadow word of w = 3523245111 is w’ = 353224.
But let us continue this process, now with w’ in place of w.
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Schensted's algorithm by example

w =

p=1115
W/ =

p =224
W// —

p/l — 33
Wl/l —

pl// — 5

The insertion tableaux of w

[y

5].

P(3523245111) =

N
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Insertion Tableau

The insertion tableaux of w

[y
[y

P(3523245111) = 2 5] of shape (4,3,2,1).

N

1
2
3[3

2]

Question

The length of the first row is the length of the longest increasing
subword. What is the interpretation of the lengths of the
remaining rows?
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Greene's Theorem

Consider two subwords:

u=aj---aj

Disjoint Subwords
We say that v and v are disjoint if

{I'l,...,l'k}ﬂ{jl,...,jr}:@.

and v = a; -+ - aj,.

r
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Greene's Theorem

Theorem

Suppose w is a word and P(w) has shape (A1,...,A;). Then, for
each k, A1 + -+ Ak is the maximum sum of lengths of k pairwise
disjoint weakly increasing subwords.

Greene invariants

max. sum of lengths of k pairwise disjoint

ak = . .
k weakly increasing subwords

Greene's theorem

ak = A1+ -+ Ak



Proof of Greene's theorem

Knuth Moves
The Knuth moves (rewriting rules) on A* are:

uyxzv = uyzxv if x <y < z,

uxzyv = uzxyv if x <y < z.

Greene's Proof

1. Greene invariants remain unchanged under Knuth moves.
2. w = reading word(P(w))

3. If w is the reading word of a tableau, then Greene's theorem
is easy.



Proof of Greene's theorem

Knuth Moves
The Knuth moves (rewriting rules) on A* are:

uyxzv = uyzxv if x <y < z,

uxzyv = uzxyv if x <y < z.

Greene's Proof

1. Greene invariants remain unchanged under Knuth moves.
2. w = reading word(P(w))

3. If w is the reading word of a tableau, then Greene's theorem
is easy.

In this proof, the most non-trivial part is the identification of
Knuth moves — simple enough for 1. to be provable, but strong
enough for 2. to hold.
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What is the reading word?

P(3523245111) =

N
~

1
2
33
5]
has reading word:

533224 1115

Step 2 in Greene's proof says that:

3523245111 = 5332241115.
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Abstract

Alur, R. and D.L. Dill, A theory of timed automata, T|
183-235.

orctical Computer Science 126 (1994)

We propose timed { finite) automata 1o model the behavior of real-time systems over time. Our
definition provides a simple, and yet powerlul, way Lo annotate state-transition graphs with timing
constraints using finitely many real-valued clocks, A timed automaton accepts timed words — infinite
sequences in which a real-valued time of occurrence is associated with each symbol. We study timed
automata from the perspective of formal Janguage theory: we consider elosure properties, decision
problems, and subclasses. We consider both nondeterministic and deterministic transition struc-
tures, and both Bichi and Muller acceptance conditions. We show that nondeterministic timed
automata are closed under union and intersection, but not under complementation, whereas
determimistic timed Muller automata are closed under all Boolean operations. The main construc-
tion of the paper is an {PSPACE) algorithm for checking the emptiness of the language of
a (ni inistic) timed We alse prove that the universality problem and the
language inclusion problem are solvable only for the deterministic automata: both problems are
undecidable{IT :-ham]iﬂ the nondeterministic case and PSPACE-complete in the deterministic case.
Finally, we discuss the application of this theary to automatic verification of real-time requirements
of finite-state systems.
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Timed Words

In formal verification of systems, a word represents a sequence of
events.

The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 ---a

timed word: ail .. af’

Here t; is a non-negative real number, which represents the
amount of time for which the letter a; persisted.

Al = Monoid of timed words

Contains the monoid A} as the submoid of words a? . a,t’, where
ti,- -+, ty are positive integers.



Subwords of Timed Words

A timed word:
— oh
w=c¢ -C

of length /(w) = t; + - - - + tx can be thought of as a
right-continuous piecewise-constant function

w: [0, /(w)) — Aj,

with w(t)=a;if t1 +---+tio1 <t <tp+---+t.
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Subwords of Timed Words

A timed word:
— oh
w=c¢ -C

of length /(w) = t; + - - - + tx can be thought of as a
right-continuous piecewise-constant function

w: [0, /(w)) — Aj,

with w(t)=a;if t1 +---+tio1 <t <tp+---+t.
Given a subset S = [a1,b1)U---[a,, b,) C [0,/(w)), can construct
a timed word ws:

ws(t) = w(u),

where u is such that meas([0,u) N S) = t.
Subwords ws and wr are said to be disjoint if SN T = (.
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Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, c'¢) of c'e into u is
defined as follows: if u(t) < c forall 0 < t < /(u), then

ROWINS (u, c*) = (0, uc™).
Otherwise, there exists 0 < t < /(u) such that u(t) > c. Let
to = min{0 <t < I(u) | u(t) > c}.
Define

ROWINS (u, cte) — 4 Wito.totto) “[07to)f““[to+tc,/(w))) 1) =t > te,
(Uto,1(u))> U[0,t0)€™) if I(u) —to < te.

This is the natural extension of Schensted's algorithm for finding
the length of the longest increasing subword.
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Visualization of row insertion

EEE -
rowins( I I | [E)

N —
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Insertion tableau of a timed word

Just as the insertion tableau of a word was defined using row
insertion, the timed insertion tableau of a timed word can be
defined using timed row insertion.

Using a colormap to represent the alphabet:

EEE - N

a timed word can be represented as a ribbon:

The insertion tableau of the above timed word is:
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Greene's theorem for timed words

Greene'e theorem holds for timed words
The only difficulty is the identification of a replacement for Knuth
relations.
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Knuth relations
Knuth's original relations

xzy =zxy if x <y < z,
yxz=yzx if x <y < z.

Knuth's relations for timed words

xzy = zxy when xyz is a timed row, /(z) = I(y), and lim y(t) < z(0),

I
t—>I/(y)

yxz = yzx when xyz is a timed row, /(x) = /(y), and |il?’l) x(t) < y(0).
t—1(x)™



Main Step in Proof of Greene's Theorem

Lemma
If two timed words are timed Knuth equivalent, then they have the
same Greene invariants.
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wXxzyu | wzxyu
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Proof in the classical case

Consider the relation:

xzy =zxy if x <y < z.

wXxzyu | wzxyu

w'zu' | w'zu’
w'xyu" | w'xyu’
w'xzu' | w'xyu’

w'xzu’
1 "

w”yu




Proof in the classical case

Consider the relation:

xzy =zxy if x <y < z.

wxzyu | wzxyu
w'zu’ w'zu’

w'xyu" | w'xyu’
w'xzu' | w'xyu’

w'xzu' | w'xyu”
" ”

w"yu w"zu'




Proof in the timed case

Consider the relation:

xzy = zxy when xyz is a timed row, /(z) = I(y), and

lim y(t) < z(0)
t—I(y)~

Consider k timed row subwords of wxzyu realizing ax(wxzyu):

wxzyu

wzxy u

wi1Xx1z1U1
W2 X2 Zo U2

Wy X, Zp Uy

Wr41Xr+1Yr+1Ur41

Wi Xk Yk Uk




Proof in the timed case

Consider the relation:

xzy = zxy when xyz is a timed row, /(z) = /(y), and Iilzn) y(t) < z(0)
t—1(y)~

Consider k timed subwords of wxzyu realizing ax(wxzyu):
Case l: x;=0fori=1,...,r

wXZyu wZzxy u
W1x1z1 U1 w1z1Up
W2x222 U2 W2z U2
Wy X, Zy Uy Wy Zy Uy

Wr 1 Xr1Yr+1Ur41 | Wrp1 Xrp1Yr+1Ur41

Wi Xk Yk Uk Wik Xk Yk Uk




Proof in the timed case

Consider the relation:

xzy = zxy when xyz is a timed row, /(z) = /(y), and Iilzn) y(t) < z(0)
t—1(y)~

Consider k timed subwords of wxzyu realizing ax(wxzyu):
Case 2: yj=0fori=r+1,...,k

wXxzyu wzxyu
wiXxi1ziuy wixiyu
W2 X Zp U WoXxo U2
WeXrZ Uy WX Uy

Wy 1 Xr1Yr+1Ur41 | Wrp1Xrp1Ur41

Wi Xk Yk Uk Wi Xy Uk




Proof in the timed case

Consider the relation:

xzy = zxy when xyz is a timed row, /(z) = /(y), and Iilzn) y(t) < z(0)
t—1(y)~

Consider k timed subwords of wxzyu realizing ax(wxzyu):
Case 3: x; # 0 and yx # 0, (minx; < min x;, max y, > maxy;)

wXzyu wzxy u
wiXxi1ziu W1 Xo0YoUk
Wo X2 Zo U Wo Zo U
WrXrZr Uy WeZ U,

Wr+1Xr+1Yr41Ur+1 Wr41Ur41
Wi X Vi Uk Wil
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Timed Pieri Rules

A timed column in Ai, is a word of the form:
na,, .. 232131,
where a1, ...,a, € [0,1]. Let RT(A,) and CT(A,) denote the sets

of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab\(An) x RT(An)> [ Tabl(An),

p—X horiz. strip

Tab{(A,) x C'(A)= [ Tabl(An).

©U—X\ vert. strip



Application: PL interpolation of RSK

RSK correspondence

Matrices with non-negative real entries are in bijective
correspondence with pairs of timed tableau of the same shape.

A+ (P,Q)



Example

0.16 0.29 0.68 0.44
A=1029 070 0.38 0.45
0.32 0.29 0.43 0.70

Then (P, Q) = RSK(A) are given by:
P — 30‘3240.2920.6030.6540.5510.7720.6730.5240.75

Q — 30.6121.3830.4311.5720.4530.70.

Using the colormap:
H -

RSK(A) is:

e




The Dual RSK Correspondence

0.36 0.99 0.88 0.84
0.55 0.63 0.43 0.09
0.95 0.58 0.67 0.09
0.28 0.90 0.47 0.37

Then the dual RSK correspondence is given by:

P =



The Dual RSK Correspondence

0.36 0.99 0.88 0.84
0.55 0.63 0.43 0.09
0.95 0.58 0.67 0.09
0.28 0.90 0.47 0.37

Then the dual RSK correspondence is given by:

P =

Gale-Ryser Polytope

The dual RSK correspondence is a PL bijection from the
Gale-Ryser polytope onto the set of pairs (P, Q) where P is a dual
timed tableau and @ is a timed tableau, P and @ have the same
shape.
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Let g = by — bx_1, and Ay = ax — ax_1. Then p and X\ are
mutually conjugate partitions.



Greene's Duality Theorem: An Unsolved Problem

Given w € A}, define

b, — Max. sum of lengths of k pairwise disjoint
column subwords

Greene's Duality Theorem
Let g = by — bx_1, and Ay = ax — ax_1. Then p and X\ are
mutually conjugate partitions.

Problem
Formulate and prove Greene's Duality Theorem for timed words.



