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The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .
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The Longest Increasing Subword Problem

Problem
Given a word w ∈ A∗n, determine the length of the longest weakly
increasing subword of w .

Schensted’s one-pass algorithm

Idea: read the word from left to right, keeping track of the least
last element the longest increasing subword of length r for each r .
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Greene’s Theorem
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Consider two subwords:
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Disjoint Subwords

We say that u and v are disjoint if

{i1, . . . , ik} ∩ {j1, . . . , jr} = ∅.
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Greene’s Theorem

Theorem
Suppose w is a word and P(w) has shape (λ1, . . . , λl). Then, for
each k , λ1 + · · ·+ λk is the maximum sum of lengths of k pairwise
disjoint weakly increasing subwords.

Greene invariants

ak =
max. sum of lengths of k pairwise disjoint
weakly increasing subwords

.

Greene’s theorem
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Proof of Greene’s theorem

Knuth Moves
The Knuth moves (rewriting rules) on A∗ are:

uyxzv ≡ uyzxv if x < y ≤ z ,

uxzyv ≡ uzxyv if x ≤ y < z .

Greene’s Proof

1. Greene invariants remain unchanged under Knuth moves.

2. w ≡ reading word(P(w))

3. If w is the reading word of a tableau, then Greene’s theorem
is easy.

In this proof, the most non-trivial part is the identification of
Knuth moves — simple enough for 1. to be provable, but strong
enough for 2. to hold.
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2 2 4
3 3
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Step 2 in Greene’s proof says that:
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Timed Words

In formal verification of systems, a word represents a sequence of
events.

The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.
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Subwords of Timed Words

A timed word:
w = ct11 · · · c

tk
k

of length l(w) = t1 + · · ·+ tk can be thought of as a
right-continuous piecewise-constant function

w : [0, l(w))→ An,

with w(t) = ai if t1 + · · ·+ ti−1 ≤ t < t1 + · · ·+ ti .

Given a subset S = [a1, b1) ∪ · · · [ar , br ) ⊂ [0, l(w)), can construct
a timed word wS :

wS(t) = w(u),

where u is such that meas([0, u) ∩ S) = t.
Subwords wS and wT are said to be disjoint if S ∩ T = ∅.
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Timed Row Insertion

A timed row is a weakly increasing timed word.

Given a timed row u, the insertion ROWINS(u, ctc ) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc ) = (∅, uctc ).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc ) =

{
(u[t0,t0+tc ), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc ) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.
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A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui ), for i = 2, . . . , l .
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Main Step in Proof of Greene’s Theorem

Lemma
If two timed words are timed Knuth equivalent, then they have the
same Greene invariants.
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Proof in the timed case

Consider the relation:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0)

Consider k timed subwords of wxzyu realizing ak(wxzyu):
Case 3: x1 6= ∅ and yk 6= ∅, (min x1 ≤ min xi , max yk ≥ max yi )

wxzyu wzxyu

w1x1z1u1 w1x0y0uk
w2x2z2u2 w2z2u2

...
...

wrxrzrur wrzrur
wr+1xr+1yr+1ur+1 wr+1ur+1

...
...

wkxkykuk wku1



Timed Pieri Rules

A timed column in A†n is a word of the form:

nan · · · 2a21a1 ,

where a1, . . . , an ∈ [0, 1]. Let R†(An) and C †(An) denote the sets
of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab†λ(An)× R†(An)→̃
∐

µ−λ horiz. strip

Tab†µ(An),

Tab†λ(An)× C †(An)→̃
∐

µ−λ vert. strip

Tab†µ(An).
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Application: PL interpolation of RSK

RSK correspondence

Matrices with non-negative real entries are in bijective
correspondence with pairs of timed tableau of the same shape.

A↔ (P,Q)



Example

A =

0.16 0.29 0.68 0.44
0.29 0.70 0.38 0.45
0.32 0.29 0.43 0.70

 .

Then (P,Q) = RSK (A) are given by:

P = 30.3240.2920.6030.6540.5510.7720.6730.5240.75,

Q = 30.6121.3830.4311.5720.4530.70.

Using the colormap:

RSK (A) is:



The Dual RSK Correspondence

A =


0.36 0.99 0.88 0.84
0.55 0.63 0.43 0.09
0.95 0.58 0.67 0.09
0.28 0.90 0.47 0.37


Then the dual RSK correspondence is given by:

Gale-Ryser Polytope

The dual RSK correspondence is a PL bijection from the
Gale-Ryser polytope onto the set of pairs (P,Q) where P is a dual
timed tableau and Q is a timed tableau, P and Q have the same
shape.
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Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.



Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.



Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.


