
The Timed Plactic Monoid

Amritanshu Prasad

The Institute of Mathematical Sciences, Chennai
Homi Bhabha National Institute, Mumbai

21st May 2020
IMSc Algebraic Combinatorics Seminar

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.

Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.

Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Monoid of Words

The Alphabet

An = {1, . . . , n}

This is an ordered alphabet.

The Monoid of Words

A∗n = {a1 · · · al | l ≥ 0, ai ∈ An}.

Product: concatentation of words.
Unit: the empty word ∅.
Subwords

w = a1 · · · al
w ′ = ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ l .

Then w ′ is said to be a subword of w .

The Longest Increasing Subword Problem

Problem
Given a word w ∈ A∗n, determine the length of the longest weakly
increasing subword of w .

Schensted’s one-pass algorithm

Idea: read the word from left to right, keeping track of the least
last element the longest increasing subword of length r for each r .

The Longest Increasing Subword Problem

Problem
Given a word w ∈ A∗n, determine the length of the longest weakly
increasing subword of w .

Schensted’s one-pass algorithm

Idea: read the word from left to right, keeping track of the least
last element the longest increasing subword of length r for each r .

The Longest Increasing Subword Problem

Problem
Given a word w ∈ A∗n, determine the length of the longest weakly
increasing subword of w .

Schensted’s one-pass algorithm

Idea: read the word from left to right, keeping track of the least
last element the longest increasing subword of length r for each r .

Schensted’s algorithm by example

w = 3523245111

p =

w ′ =

Schensted’s algorithm by example

w = 3523245111

p =

w ′ =

Schensted’s algorithm by example

w = 523245111

p = 3

w ′ =

Schensted’s algorithm by example

w = 523245111

p = 3

w ′ =

Schensted’s algorithm by example

w = 23245111

p = 35

w ′ =

Schensted’s algorithm by example

w = 23245111

p = 35

w ′ =

Schensted’s algorithm by example

w = 3245111

p = 25

w ′ = 3

Schensted’s algorithm by example

w = 3245111

p = 25

w ′ = 3

Schensted’s algorithm by example

w = 245111

p = 23

w ′ = 35

Schensted’s algorithm by example

w = 245111

p = 23

w ′ = 35

Schensted’s algorithm by example

w = 45111

p = 22

w ′ = 353

Schensted’s algorithm by example

w = 45111

p = 22

w ′ = 353

Schensted’s algorithm by example

w = 5111

p = 224

w ′ = 353

Schensted’s algorithm by example

w = 5111

p = 224

w ′ = 353

Schensted’s algorithm by example

w = 111

p = 2245

w ′ = 353

Schensted’s algorithm by example

w = 111

p = 2245

w ′ = 353

Schensted’s algorithm by example

w = 11

p = 1245

w ′ = 3532

Schensted’s algorithm by example

w = 11

p = 1245

w ′ = 3532

Schensted’s algorithm by example

w = 1

p = 1145

w ′ = 35322

Schensted’s algorithm by example

w = 1

p = 1145

w ′ = 35322

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

The length of the longest increasing subword of w = 3523245111
is 4.

The shadow word of w = 3523245111 is w ′ = 353224.
But let us continue this process, now with w ′ in place of w .

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

The length of the longest increasing subword of w = 3523245111
is 4.
The shadow word of w = 3523245111 is w ′ = 353224.

But let us continue this process, now with w ′ in place of w .

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

The length of the longest increasing subword of w = 3523245111
is 4.
The shadow word of w = 3523245111 is w ′ = 353224.
But let us continue this process, now with w ′ in place of w .

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

p′ =

w ′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ = 353224

p′ =

w ′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ = 53224

p′ = 3

w ′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ = 53224

p′ = 3

w ′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ = 3224

p′ = 35

w ′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ = 224

p′ = 33

w ′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ = 224

p′ = 33

w ′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ = 24

p′ = 23

w ′′ = 53

Schensted’s algorithm by example

w =

p = 1115

w ′ = 24

p′ = 23

w ′′ = 53

Schensted’s algorithm by example

w =

p = 1115

w ′ = 4

p′ = 22

w ′′ = 533

Schensted’s algorithm by example

w =

p = 1115

w ′ = 4

p′ = 22

w ′′ = 533

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 533

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 533

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 533

p′′ =

w ′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 533

p′′ =

w ′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 33

p′′ = 5

w ′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 33

p′′ = 5

w ′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 3

p′′ = 3

w ′′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ = 3

p′′ = 3

w ′′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ =

p′′ = 33

w ′′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ =

p′′ = 33

w ′′′ = 5

p′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ =

p′′ = 33

w ′′′ = 5

p′′′ =

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ =

p′′ = 33

w ′′′ =

p′′′ = 5

Schensted’s algorithm by example

w =

p = 1115

w ′ =

p′ = 224

w ′′ =

p′′ = 33

w ′′′ =

p′′′ = 5

The insertion tableaux of w

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

.

Insertion Tableau

The insertion tableaux of w

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

of shape (4, 3, 2, 1).

Question
The length of the first row is the length of the longest increasing
subword. What is the interpretation of the lengths of the
remaining rows?

Insertion Tableau

The insertion tableaux of w

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

of shape (4, 3, 2, 1).

Question
The length of the first row is the length of the longest increasing
subword. What is the interpretation of the lengths of the
remaining rows?

Greene’s Theorem

w = a1 · · · al .

Consider two subwords:

u = ai1 · · · aik and v = aj1 · · · ajr .

Disjoint Subwords

We say that u and v are disjoint if

{i1, . . . , ik} ∩ {j1, . . . , jr} = ∅.

Greene’s Theorem

w = a1 · · · al .

Consider two subwords:

u = ai1 · · · aik and v = aj1 · · · ajr .

Disjoint Subwords

We say that u and v are disjoint if

{i1, . . . , ik} ∩ {j1, . . . , jr} = ∅.

Greene’s Theorem

w = a1 · · · al .

Consider two subwords:

u = ai1 · · · aik and v = aj1 · · · ajr .

Disjoint Subwords

We say that u and v are disjoint if

{i1, . . . , ik} ∩ {j1, . . . , jr} = ∅.

Greene’s Theorem

Theorem
Suppose w is a word and P(w) has shape (λ1, . . . , λl). Then, for
each k , λ1 + · · ·+ λk is the maximum sum of lengths of k pairwise
disjoint weakly increasing subwords.

Greene invariants

ak =
max. sum of lengths of k pairwise disjoint
weakly increasing subwords

.

Greene’s theorem

ak = λ1 + · · ·+ λk .

Greene’s Theorem

Theorem
Suppose w is a word and P(w) has shape (λ1, . . . , λl). Then, for
each k , λ1 + · · ·+ λk is the maximum sum of lengths of k pairwise
disjoint weakly increasing subwords.

Greene invariants

ak =
max. sum of lengths of k pairwise disjoint
weakly increasing subwords

.

Greene’s theorem

ak = λ1 + · · ·+ λk .

Greene’s Theorem

Theorem
Suppose w is a word and P(w) has shape (λ1, . . . , λl). Then, for
each k , λ1 + · · ·+ λk is the maximum sum of lengths of k pairwise
disjoint weakly increasing subwords.

Greene invariants

ak =
max. sum of lengths of k pairwise disjoint
weakly increasing subwords

.

Greene’s theorem

ak = λ1 + · · ·+ λk .

Proof of Greene’s theorem

Knuth Moves
The Knuth moves (rewriting rules) on A∗ are:

uyxzv ≡ uyzxv if x < y ≤ z ,

uxzyv ≡ uzxyv if x ≤ y < z .

Greene’s Proof

1. Greene invariants remain unchanged under Knuth moves.

2. w ≡ reading word(P(w))

3. If w is the reading word of a tableau, then Greene’s theorem
is easy.

In this proof, the most non-trivial part is the identification of
Knuth moves — simple enough for 1. to be provable, but strong
enough for 2. to hold.

Proof of Greene’s theorem

Knuth Moves
The Knuth moves (rewriting rules) on A∗ are:

uyxzv ≡ uyzxv if x < y ≤ z ,

uxzyv ≡ uzxyv if x ≤ y < z .

Greene’s Proof

1. Greene invariants remain unchanged under Knuth moves.

2. w ≡ reading word(P(w))

3. If w is the reading word of a tableau, then Greene’s theorem
is easy.

In this proof, the most non-trivial part is the identification of
Knuth moves — simple enough for 1. to be provable, but strong
enough for 2. to hold.

What is the reading word?

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

has reading word:
5 33 224 1115

Step 2 in Greene’s proof says that:

3523245111 ≡ 5332241115.

What is the reading word?

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

has reading word:
5 33 224 1115

Step 2 in Greene’s proof says that:

3523245111 ≡ 5332241115.

What is the reading word?

P(3523245111) = 1 1 1 5
2 2 4
3 3
5

has reading word:
5 33 224 1115

Step 2 in Greene’s proof says that:

3523245111 ≡ 5332241115.

Timed Words

In formal verification of systems, a word represents a sequence of
events.

The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Timed Words

In formal verification of systems, a word represents a sequence of
events.
The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Timed Words

In formal verification of systems, a word represents a sequence of
events.
The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Timed Words

In formal verification of systems, a word represents a sequence of
events.
The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Timed Words

In formal verification of systems, a word represents a sequence of
events.
The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Timed Words

In formal verification of systems, a word represents a sequence of
events.
The formal verification of timed systems involves a sequence of
events with timestamps.

word: a1 · · · al
timed word: at11 · · · a

tl
l

Here ti is a non-negative real number, which represents the
amount of time for which the letter ai persisted.

A†n = Monoid of timed words

Contains the monoid A∗n as the submoid of words at11 · · · a
tl
l , where

t1, · · · , tl are positive integers.

Subwords of Timed Words

A timed word:
w = ct11 · · · c

tk
k

of length l(w) = t1 + · · ·+ tk can be thought of as a
right-continuous piecewise-constant function

w : [0, l(w))→ An,

with w(t) = ai if t1 + · · ·+ ti−1 ≤ t < t1 + · · ·+ ti .

Given a subset S = [a1, b1) ∪ · · · [ar , br) ⊂ [0, l(w)), can construct
a timed word wS :

wS(t) = w(u),

where u is such that meas([0, u) ∩ S) = t.
Subwords wS and wT are said to be disjoint if S ∩ T = ∅.

Subwords of Timed Words

A timed word:
w = ct11 · · · c

tk
k

of length l(w) = t1 + · · ·+ tk can be thought of as a
right-continuous piecewise-constant function

w : [0, l(w))→ An,

with w(t) = ai if t1 + · · ·+ ti−1 ≤ t < t1 + · · ·+ ti .
Given a subset S = [a1, b1) ∪ · · · [ar , br) ⊂ [0, l(w)), can construct
a timed word wS :

wS(t) = w(u),

where u is such that meas([0, u) ∩ S) = t.

Subwords wS and wT are said to be disjoint if S ∩ T = ∅.

Subwords of Timed Words

A timed word:
w = ct11 · · · c

tk
k

of length l(w) = t1 + · · ·+ tk can be thought of as a
right-continuous piecewise-constant function

w : [0, l(w))→ An,

with w(t) = ai if t1 + · · ·+ ti−1 ≤ t < t1 + · · ·+ ti .
Given a subset S = [a1, b1) ∪ · · · [ar , br) ⊂ [0, l(w)), can construct
a timed word wS :

wS(t) = w(u),

where u is such that meas([0, u) ∩ S) = t.
Subwords wS and wT are said to be disjoint if S ∩ T = ∅.

Timed Row Insertion

A timed row is a weakly increasing timed word.

Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows:

if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Timed Row Insertion

A timed row is a weakly increasing timed word.
Given a timed row u, the insertion ROWINS(u, ctc) of ctc into u is
defined as follows: if u(t) ≤ c for all 0 ≤ t < l(u), then

ROWINS(u, ctc) = (∅, uctc).

Otherwise, there exists 0 ≤ t < l(u) such that u(t) > c. Let

t0 = min{0 ≤ t < l(u) | u(t) > c}.

Define

ROWINS(u, ctc) =

{
(u[t0,t0+tc), u[0,t0)c

tcu[t0+tc ,l(w))) if l(u)− t0 > tc ,

(u[t0,l(u)), u[0,t0)c
tc) if l(u)− t0 ≤ tc .

This is the natural extension of Schensted’s algorithm for finding
the length of the longest increasing subword.

Visualization of row insertion

1 2 3 4 5

ROWINS(,)

= (,).

Visualization of row insertion

1 2 3 4 5

ROWINS(,)

= (,).

Visualization of row insertion

1 2 3 4 5

ROWINS(,)

= (,).

Timed Tableaux

A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui), for i = 2, . . . , l .

Timed Tableaux

A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui), for i = 2, . . . , l .

Timed Tableaux

A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui), for i = 2, . . . , l .

Timed Tableaux

A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui), for i = 2, . . . , l .

Timed Tableaux

A timed tableau is a timed word of the form ulul−1 · · · u1 such that

1. Each ui is a timed row.

2. l(u1) ≥ l(u2) ≥ · · · l(ul).

3. ui (t) > ui−1(t) for 0 ≤ t ≤ l(ui), for i = 2, . . . , l .

Insertion tableau of a timed word
Just as the insertion tableau of a word was defined using row
insertion, the timed insertion tableau of a timed word can be
defined using timed row insertion.

Using a colormap to represent the alphabet:

a timed word can be represented as a ribbon:

The insertion tableau of the above timed word is:

Insertion tableau of a timed word
Just as the insertion tableau of a word was defined using row
insertion, the timed insertion tableau of a timed word can be
defined using timed row insertion.
Using a colormap to represent the alphabet:

a timed word can be represented as a ribbon:

The insertion tableau of the above timed word is:

Insertion tableau of a timed word
Just as the insertion tableau of a word was defined using row
insertion, the timed insertion tableau of a timed word can be
defined using timed row insertion.
Using a colormap to represent the alphabet:

a timed word can be represented as a ribbon:

The insertion tableau of the above timed word is:

Insertion tableau of a timed word
Just as the insertion tableau of a word was defined using row
insertion, the timed insertion tableau of a timed word can be
defined using timed row insertion.
Using a colormap to represent the alphabet:

a timed word can be represented as a ribbon:

The insertion tableau of the above timed word is:

Greene’s theorem for timed words

Greene’e theorem holds for timed words

The only difficulty is the identification of a replacement for Knuth
relations.

Greene’s theorem for timed words

Greene’e theorem holds for timed words
The only difficulty is the identification of a replacement for Knuth
relations.

Knuth relations

Knuth’s original relations

xzy ≡ zxy if x ≤ y < z ,

yxz ≡ yzx if x < y ≤ z .

Knuth’s relations for timed words

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0),

yxz ≡ yzx when xyz is a timed row, l(x) = l(y), and lim
t→l(x)−

x(t) < y(0).

Knuth relations

Knuth’s original relations

xzy ≡ zxy if x ≤ y < z ,

yxz ≡ yzx if x < y ≤ z .

Knuth’s relations for timed words

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0),

yxz ≡ yzx when xyz is a timed row, l(x) = l(y), and lim
t→l(x)−

x(t) < y(0).

Main Step in Proof of Greene’s Theorem

Lemma
If two timed words are timed Knuth equivalent, then they have the
same Greene invariants.

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

w’xyu’ w’xyu’

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

w’xyu’ w’xyu’

w’xzu’

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

w’xyu’ w’xyu’

w’xzu’ w’xyu’

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

w’xyu’ w’xyu’

w’xzu’ w’xyu’

w’xzu’
w”yu”

Proof in the classical case

Consider the relation:

xzy ≡ zxy if x ≤ y < z .

wxzyu wzxyu

w’zu’ w’zu’

w’xyu’ w’xyu’

w’xzu’ w’xyu’

w’xzu’ w’xyu”
w”yu” w”zu’

Proof in the timed case

Consider the relation:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0)

Consider k timed row subwords of wxzyu realizing ak(wxzyu):

wxzyu wzxyu

w1x1z1u1
w2x2z2u2

...
...

wrxrzrur
wr+1xr+1yr+1ur+1

...
...

wkxkykuk

Proof in the timed case

Consider the relation:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0)

Consider k timed subwords of wxzyu realizing ak(wxzyu):
Case 1: xi = ∅ for i = 1, . . . , r

wxzyu wzxyu

w1x1z1u1 w1z1u1
w2x2z2u2 w2z2u2

...
...

wrxrzrur wrzrur
wr+1xr+1yr+1ur+1 wr+1xr+1yr+1ur+1

...
...

wkxkykuk wkxkykuk

Proof in the timed case

Consider the relation:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0)

Consider k timed subwords of wxzyu realizing ak(wxzyu):
Case 2: yi = ∅ for i = r + 1, . . . , k

wxzyu wzxyu

w1x1z1u1 w1x1yu1
w2x2z2u2 w2x2u2

...
...

wrxrzrur wrxrur
wr+1xr+1yr+1ur+1 wr+1xr+1ur+1

...
...

wkxkykuk wkxkuk

Proof in the timed case

Consider the relation:

xzy ≡ zxy when xyz is a timed row, l(z) = l(y), and lim
t→l(y)−

y(t) < z(0)

Consider k timed subwords of wxzyu realizing ak(wxzyu):
Case 3: x1 6= ∅ and yk 6= ∅, (min x1 ≤ min xi , max yk ≥ max yi)

wxzyu wzxyu

w1x1z1u1 w1x0y0uk
w2x2z2u2 w2z2u2

...
...

wrxrzrur wrzrur
wr+1xr+1yr+1ur+1 wr+1ur+1

...
...

wkxkykuk wku1

Timed Pieri Rules

A timed column in A†n is a word of the form:

nan · · · 2a21a1 ,

where a1, . . . , an ∈ [0, 1]. Let R†(An) and C †(An) denote the sets
of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab†λ(An)× R†(An)→̃
∐

µ−λ horiz. strip

Tab†µ(An),

Tab†λ(An)× C †(An)→̃
∐

µ−λ vert. strip

Tab†µ(An).

Timed Pieri Rules

A timed column in A†n is a word of the form:

nan · · · 2a21a1 ,

where a1, . . . , an ∈ [0, 1].

Let R†(An) and C †(An) denote the sets
of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab†λ(An)× R†(An)→̃
∐

µ−λ horiz. strip

Tab†µ(An),

Tab†λ(An)× C †(An)→̃
∐

µ−λ vert. strip

Tab†µ(An).

Timed Pieri Rules

A timed column in A†n is a word of the form:

nan · · · 2a21a1 ,

where a1, . . . , an ∈ [0, 1]. Let R†(An) and C †(An) denote the sets
of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab†λ(An)× R†(An)→̃
∐

µ−λ horiz. strip

Tab†µ(An),

Tab†λ(An)× C †(An)→̃
∐

µ−λ vert. strip

Tab†µ(An).

Timed Pieri Rules

A timed column in A†n is a word of the form:

nan · · · 2a21a1 ,

where a1, . . . , an ∈ [0, 1]. Let R†(An) and C †(An) denote the sets
of timed rows and timed columns.

Pieri Rules
Insertion gives rise to bijections:

Tab†λ(An)× R†(An)→̃
∐

µ−λ horiz. strip

Tab†µ(An),

Tab†λ(An)× C †(An)→̃
∐

µ−λ vert. strip

Tab†µ(An).

Application: PL interpolation of RSK

RSK correspondence

Matrices with non-negative real entries are in bijective
correspondence with pairs of timed tableau of the same shape.

A↔ (P,Q)

Example

A =

0.16 0.29 0.68 0.44
0.29 0.70 0.38 0.45
0.32 0.29 0.43 0.70

 .

Then (P,Q) = RSK (A) are given by:

P = 30.3240.2920.6030.6540.5510.7720.6730.5240.75,

Q = 30.6121.3830.4311.5720.4530.70.

Using the colormap:

RSK (A) is:

The Dual RSK Correspondence

A =


0.36 0.99 0.88 0.84
0.55 0.63 0.43 0.09
0.95 0.58 0.67 0.09
0.28 0.90 0.47 0.37


Then the dual RSK correspondence is given by:

Gale-Ryser Polytope

The dual RSK correspondence is a PL bijection from the
Gale-Ryser polytope onto the set of pairs (P,Q) where P is a dual
timed tableau and Q is a timed tableau, P and Q have the same
shape.

The Dual RSK Correspondence

A =


0.36 0.99 0.88 0.84
0.55 0.63 0.43 0.09
0.95 0.58 0.67 0.09
0.28 0.90 0.47 0.37


Then the dual RSK correspondence is given by:

Gale-Ryser Polytope

The dual RSK correspondence is a PL bijection from the
Gale-Ryser polytope onto the set of pairs (P,Q) where P is a dual
timed tableau and Q is a timed tableau, P and Q have the same
shape.

Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.

Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.

Greene’s Duality Theorem: An Unsolved Problem

Given w ∈ A∗n, define

bk =
max. sum of lengths of k pairwise disjoint
column subwords

.

Greene’s Duality Theorem

Let µk = bk − bk−1, and λk = ak − ak−1. Then µ and λ are
mutually conjugate partitions.

Problem
Formulate and prove Greene’s Duality Theorem for timed words.

