Crystals for stable Grothendieck polynomials

Anne Schilling, UC Davis

based on Jennifer Morse, AS, IMRN 2016(8) (2016) 2239 Jennifer Morse, Jianping Pan, Wencin Poh, AS, arXiv:1911.08732

University of Virginia University of California, Davis

IMSc Algebraic Combinatorics Seminar, April 8, 2020

Outline

2 Crystal for Stanley symmetric functions

3 Crystal for Grothendieck polynomials

Properties and results

▲□▶▲□▶▲≡▶▲≡▶ = 三 のへで

Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$

Indexed by partitions:					J
------------------------	--	--	--	--	---

• Tensor product multiplicities

$$V(\lambda)\otimes V(\mu)=\bigoplus_{\nu}\,c_{\lambda\mu}^{
u}\,V(
u)$$

• Symmetric function coefficients

$$egin{array}{rcl} s_\lambda \, s_\mu &=& \sum_
u \, c^
u_{\lambda\mu} \, s_
u \ s_{
u/\mu} &=& \sum_\lambda \, c^
u_{\lambda\mu} \, s_\lambda \end{array}$$

• Intersections in the Grassmannian

$$c_{\lambda\mu}^{\nu} = X_{\lambda} \cap X_{\mu} \cap X_{\nu^{\vee}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Combinatorial description

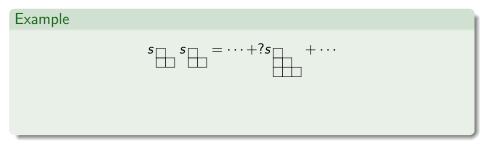
Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

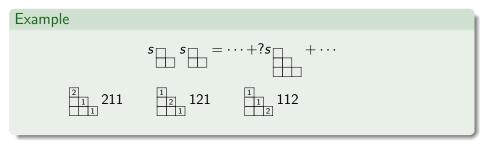
 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.



Combinatorial description

Littlewood-Richardson rule

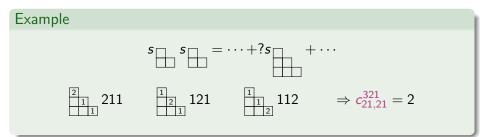
 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.



Combinatorial description

Littlewood-Richardson rule

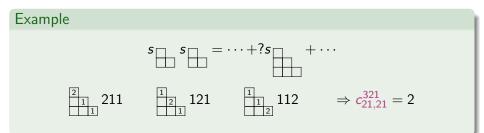
 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.



Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.



Gordon James (1987) on the Littlewood-Richardson rule:

"Unfortunately the Littlewood-Richardson rule is much harder to prove than was at first suspected. The author was once told that the Littlewood-Richardson rule helped to get men on the moon but was not proved until after they got there."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Crystal graph

Action of crystal operators e_i , f_i , s_i on tableaux:

- **(**) Consider letters i and i + 1 in row reading word of the tableau
- **2** Successively "bracket" pairs of the form (i + 1, i)
- Left with word of the form $i^r(i+1)^s$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Crystal graph

Action of crystal operators e_i , f_i , s_i on tableaux:

- **(**) Consider letters i and i + 1 in row reading word of the tableau
- 2 Successively "bracket" pairs of the form (i + 1, i)
- Left with word of the form $i^r(i+1)^s$

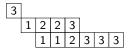
$$e_i(i^r(i+1)^s) = \begin{cases} i^{r+1}(i+1)^{s-1} & \text{if } s > 0\\ 0 & \text{else} \end{cases}$$
$$f_i(i^r(i+1)^s) = \begin{cases} i^{r-1}(i+1)^{s+1} & \text{if } r > 0\\ 0 & \text{else} \end{cases}$$
$$s_i(i^r(i+1)^s) = i^s(i+1)^r$$

Motivation Crystal for Stanley symmetric functions

Crystal for Grothendieck polynomials

Properties and results

Crystal reformulation



Motivation Crystal for Stanley symmetric functions

Crystal for Grothendieck polynomials

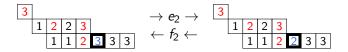
Properties and results

Crystal reformulation

イロト 不得 トイヨト イヨト

3

Crystal reformulation

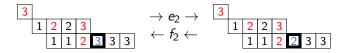


 e_2 : change leftmost unpaired 3 into 2 f_2 : change rightmost unpaired 2 into 3

イロト 不得 トイヨト イヨト

э.

Crystal reformulation



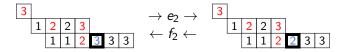
- e_2 : change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

Theorem

b where all $e_i(b) = 0$ (highest weight)

- $\leftrightarrow \textit{ connected component}$
- \leftrightarrow irreducible

Crystal reformulation



- e_2 : change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

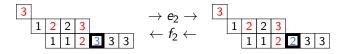
Theorem

- b where all $e_i(b) = 0$ (highest weight)
- \leftrightarrow connected component
- \leftrightarrow irreducible

Reformulation of LR rule

 $c_{\lambda\mu}^{
u}$ counts tableaux of shape u/λ and weight μ which are highest weight.

Crystal reformulation



- e₂: change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

Theorem

b where all
$$e_i(b) = 0$$
 (highest weight)

- $\leftrightarrow \textit{ connected component}$
- \leftrightarrow irreducible

Mechanism to get Schur expansion

$$s_{\nu/\lambda} = \sum_{T \in B(\nu/\lambda)} x^{weight(T)} = \sum_{\substack{T \in B(\nu/\lambda) \\ highest weight}} s_{weight(T)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Variation c_{uv}^{w}

Indexed by permutations: (1,2,3) (2,1,3) (3,2,1) \cdots

• Intersections in the set \mathbb{F}_n of complete flags $0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$

$$c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$$

• Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum_{w}c_{uv}^{w}\mathfrak{S}_{w_{0}w}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Variation c_{uv}^{w}

Indexed by permutations: (1,2,3) (2,1,3) (3,2,1) \cdots

• Intersections in the set \mathbb{F}_n of complete flags $0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$

$$c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$$

• Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum_{w}c_{uv}^{w}\mathfrak{S}_{w_{0}w}$$

WHAT ARE THESE COUNTING?

Outline

2 Crystal for Stanley symmetric functions

3 Crystal for Grothendieck polynomials

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Stable Schubert polynomials F_w

• restriction: $\mathfrak{S}_{1_m \times w} \longrightarrow$ Stanley symmetric functions F_w for $w \in S_n$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Stable Schubert polynomials F_w

- restriction: $\mathfrak{S}_{1_m \times w} \longrightarrow$ Stanley symmetric functions F_w for $w \in S_n$
- for 321-avoiding w,

$${\it F}_{\it w}={\it s}_{
u/\mu}=\sum_{\lambda}c_{\lambda\mu}^{
u}\,{\it s}_{\lambda}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Stable Schubert polynomials F_w

- restriction: $\mathfrak{S}_{1_m \times w} \longrightarrow$ Stanley symmetric functions F_w for $w \in S_n$
- for 321-avoiding w,

$${\it F}_{\it w}={\it s}_{
u/\mu}=\sum_{\lambda}c_{\lambda\mu}^{
u}\,{\it s}_{\lambda}$$

• symmetric and Schur positive (Stanley 1984, Edelman, Greene 1987)

$${\sf F}_w = \sum_\lambda {\sf a}_{w\lambda} \, {\sf s}_\lambda$$

Stable Schubert polynomials F_w

- restriction: $\mathfrak{S}_{1_m \times w} \longrightarrow$ Stanley symmetric functions F_w for $w \in S_n$
- for 321-avoiding w,

$${\sf F}_{\sf w}={\sf s}_{
u/\mu}=\sum_{\lambda}c_{\lambda\mu}^{
u}\,{\sf s}_{\lambda}$$

• symmetric and Schur positive (Stanley 1984, Edelman, Greene 1987)

$$F_w = \sum_\lambda a_{w\lambda} \, s_\lambda$$

• coefficient of $x_1 x_2 \cdots x_r$ counts reduced words of w

 $S_n = \langle s_1, \dots, s_{n-1} \rangle \quad s_i s_j = s_j s_i \quad s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \quad s_i^2 = id$ $(3, 2, 1, 4) = s_1 s_2 s_1 = s_2 s_1 s_2 = s_3 s_3 s_1 s_2 s_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(日) (四) (日) (日) (日)

Stable Schubert polynomials

$$F_w = \sum_{v^r \cdots v^1 = w} x_1^{\ell(v^1)} \cdots x_r^{\ell(v^r)}$$

Decreasing factorization of w

- w is the product of permutations $v^r \cdots v^1$
- 2 each v^i has a strictly decreasing reduced word

(日) (四) (日) (日) (日)

Stable Schubert polynomials

$$F_w = \sum_{v^r \cdots v^1 = w} x_1^{\ell(v^1)} \cdots x_r^{\ell(v^r)}$$

Decreasing factorization of w

- w is the product of permutations $v^r \cdots v^1$
- 2 each v^i has a strictly decreasing reduced word

$$\ell(w) = \ell(v^r) + \cdots + \ell(v^1)$$

$$w = (2, 1, 4, 3) = s_1 s_3 = s_3 s_1:$$

$$(s_1)(s_3) \longrightarrow x_1 x_2$$

$$(s_3)(s_1) \longrightarrow x_1 x_2$$

$$()(s_3 s_1) \longrightarrow x_1^2$$

$$(s_3 s_1)() \longrightarrow x_2^2$$

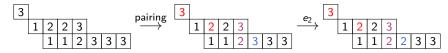
$$F_{(2,1,4,3)} = 2 x_1 x_2 + x_1^2 + x_2^2$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Crystal operators on factorizations - residue map

Recall e_i pairing and action:



A D > A P > A D > A D >

э

Crystal operators on factorizations - residue map

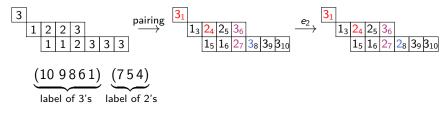
Label cells diagonally

(日)

э

Crystal operators on factorizations - residue map

Label cells diagonally

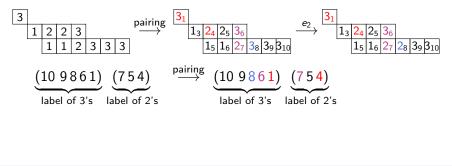


イロト イヨト イヨト

э

Crystal operators on factorizations - residue map

Label cells diagonally



operator e_i

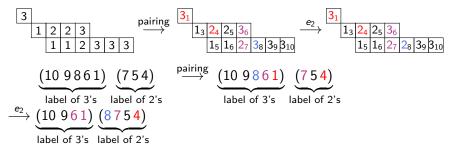
from big to small: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than x

A D > A P > A D > A D >

э

Crystal operators on factorizations - residue map

Label cells diagonally



operator ei

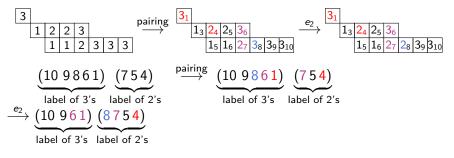
from big to small: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than xdelete smallest unpaired $z \in 3$'s and add z - t to 2's

(日)

э

Crystal operators on factorizations - residue map

Label cells diagonally



operator ei

from big to small: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than xdelete smallest unpaired $z \in 3$'s and add z - t to 2's

 $(9\,8\,6\,5\,4\,1)(9\,6\,5\,21) \rightarrow (9\,8\,5\,4\,1)(9\,6\,5\,4\,21)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Crystal Theorem

Definition

- Fix $w \in S_n$. Graph B(w)
 - ① vertices are decreasing factorizations of w
 - 2 edges are imposed and colored by f_i , e_i
 - Inighest weights are vertices with no unpaired entries

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Crystal Theorem

Definition

- Fix $w \in S_n$. Graph B(w)
 - vertices are decreasing factorizations of w
 - 2 edges are imposed and colored by f_i , e_i
 - Inighest weights are vertices with no unpaired entries

Theorem (with Morse; 2016)

```
B(w) is a crystal graph of type A_{\ell}
```

Crystal Theorem

Definition

Fix $w \in S_n$. Graph B(w)

- ① vertices are decreasing factorizations of w
- 2 edges are imposed and colored by f_i , e_i
- Inighest weights are vertices with no unpaired entries

```
Theorem (with Morse; 2016)
```

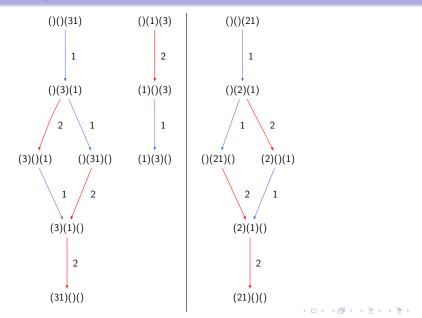
```
B(w) is a crystal graph of type A_{\ell}
```

Proof

Checking Stembridge local axioms

Ξ.

Examples



Schur expansion

Fix $w \in S_n$

Theorem (with Morse; 2016)

$${\sf F}_w = \sum_\lambda {\sf a}_{w\lambda} \, {\sf s}_\lambda$$

 $a_{w\lambda}$ counts highest weights $v^r \cdots v^1$ of B(w) with $(\ell(v^1), \ldots, \ell(v^r)) = \lambda$

Schur expansion

Fix $w \in S_n$

Theorem (with Morse; 2016)

$${\sf F}_w = \sum_\lambda {\sf a}_{w\lambda} \, {\sf s}_\lambda$$

 $a_{w\lambda}$ counts highest weights $v^r \cdots v^1$ of B(w) with $(\ell(v^1), \ldots, \ell(v^r)) = \lambda$

In S₅:
$$()^{(42)} (2)^{(4)} \implies F_{s_2s_4} = s_2 + s_{11}$$

 $(4)^{(2)}$
 $(42)^{(1)}$

Edelman-Greene insertion

Theorem (with Morse; 2016)

For any permutation $w \in S_n$, the crystal isomorphism

$$B(w)\cong \bigoplus_{\lambda}B(\lambda)^{\oplus a_{w\lambda}}$$

is explicitly given by the Edelman-Greene insertion $\varphi^Q_{\mathsf{EG}}(v^\ell \cdots v^1) = Q$:

$$\varphi_{\mathsf{EG}}^{\mathsf{Q}} \circ \mathbf{e}_{i} = \mathbf{e}_{i} \circ \varphi_{\mathsf{EG}}^{\mathsf{Q}}$$

ヘロト 人間ト 人間ト 人間ト

æ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

2 Crystal for Stanley symmetric functions

3 Crystal for Grothendieck polynomials

Properties and results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties <i>Fl_n</i>
Cohomology	s_λ	$\mathfrak{S}_w \to F_w$
K-theory	\mathfrak{G}_λ	& _w

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties Fl _n
Cohomology	s_λ	$\mathfrak{S}_w \to F_w$
K-theory	\mathfrak{G}_λ	₿ _w

Grassmannian Grothendieck polynomials: \mathfrak{G}_{λ} Lascoux, Schützenberger 1982Stable Grothendieck polynomials: \mathfrak{G}_{w} Fomin, Kirillov 1994

Combinatorial Approach?

Combining:

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties Fl _n
Cohomology	s_λ	$\mathfrak{S}_w \to F_w$
K-theory	\mathfrak{G}_λ	& _w

Grassmannian Grothendieck polynomials: \mathfrak{G}_{λ} Lascoux, Schützenberger 1982Stable Grothendieck polynomials: \mathfrak{G}_{w} Fomin, Kirillov 1994

Combinatorial Approach?

Combining:

• Crystal structure on decreasing factorizations for *F_w* (Morse, S. 2016)

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties Fl _n
Cohomology	s_λ	$\mathfrak{S}_w \to F_w$
K-theory	\mathfrak{G}_λ	\mathfrak{G}_w

Grassmannian Grothendieck polynomials: \mathfrak{G}_{λ} Lascoux, Schützenberger 1982Stable Grothendieck polynomials: \mathfrak{G}_{w} Fomin, Kirillov 1994

Combinatorial Approach?

Combining:

- Crystal structure on decreasing factorizations for F_w (Morse, S. 2016)
- Crystal structure for 𝔅_λ on set-valued tableaux (Monical & Pechenik & Scrimshaw 2018)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p,$	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if\; \pmb{p}-\pmb{q} >1$

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p$,	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

Examples

• 2112

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p,$	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

Examples

• $2112 \equiv 212$

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p$,	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

- $2112 \equiv 212 \equiv 121$
- 2121

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p$,	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

- $2112 \equiv 212 \equiv 121$
- 2121 ≡ 1211

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p$,	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

- $2112 \equiv 212 \equiv 121$
- $2121 \equiv 1211 \equiv 121 \equiv 212$
- 31312

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p$,	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if\; \pmb{p}-\pmb{q} >1$

- $2112 \equiv 212 \equiv 121$
- $2121 \equiv 1211 \equiv 121 \equiv 212$
- 31312 ≡ 3132

0-Hecke Monoid

Definition

0-Hecke monoid $\mathcal{H}_0(n)$: monoid of all finite words in $[n] := \{1, 2, \dots, n\}$ such that

$pp \equiv p,$	$pqp \equiv qpq$	for all $p, q \in [n]$
$pq \equiv qp$		$if \; \pmb{p} - \pmb{q} > 1$

- $2112 \equiv 212 \equiv 121$
- $2121 \equiv 1211 \equiv 121 \equiv 212$
- $31312 \equiv 3132 \equiv 312 \equiv 132$

(日) (四) (日) (日) (日)

Decreasing factorizations in $\mathcal{H}_0(n)$

Definition

A decreasing factorization of $w \in \mathcal{H}_0(n)$ into *m* factors is a product of decreasing factors

$$\mathbf{h} = h^m \dots h^2 h^1$$

such that $\mathbf{h} \equiv w$ in $\mathcal{H}_0(n)$.

Decreasing factorizations in $\mathcal{H}_0(n)$

Definition

A decreasing factorization of $w \in \mathcal{H}_0(n)$ into *m* factors is a product of decreasing factors

$$\mathbf{h} = h^m \dots h^2 h^1$$

such that $\mathbf{h} \equiv w$ in $\mathcal{H}_0(n)$.

 \mathcal{H}_w^m = set of decreasing factorizations of w in $\mathcal{H}_0(n)$ with m factors

Decreasing factorizations in $\mathcal{H}_0(n)$

Definition

A decreasing factorization of $w \in \mathcal{H}_0(n)$ into *m* factors is a product of decreasing factors

$$\mathbf{h} = h^m \dots h^2 h^1$$

such that $\mathbf{h} \equiv w$ in $\mathcal{H}_0(n)$.

 \mathcal{H}^m_w = set of decreasing factorizations of w in $\mathcal{H}_0(n)$ with m factors

Example

Decreasing factorizations for $132 \in \mathcal{H}_0(3)$ of length 5 with 3 factors:

Stable Grothendieck polynomials for w

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1}\in\mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})}\dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1}\in\mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})}\dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Example

 $w=132\in \mathcal{H}_0(3)$

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1}\in\mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})}\dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Example

 $w = 132 \in \mathcal{H}_0(3)$ Reduced Hecke words 132,312

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1}\in\mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})}\dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Example

 $w = 132 \in \mathcal{H}_0(3)$

Reduced Hecke words 132, 312

Decreasing factorizations for constant term:

(31)(2), (1)(32)(3)(1)(2), (1)(3)(2)

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1}\in\mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})}\dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Example

 $w=132\in \mathcal{H}_0(3)$

Reduced Hecke words 132, 312

Decreasing factorizations for constant term:

(31)(2), (1)(32)(3)(1)(2), (1)(3)(2)

 $\beta^{0}: (x_{1}^{2}x_{2} + x_{1}^{2}x_{3} + x_{2}^{2}x_{3} + x_{1}x_{2}^{2} + x_{1}x_{3}^{2} + x_{2}x_{3}^{2}) + 2x_{1}x_{2}x_{3} = s_{21}$

Schur positivity

Schur positivity (Fomin, Greene 1998)

$$\mathfrak{G}_w(\mathbf{x},eta) = \sum_\lambda eta^{|\lambda|-\ell(w)} g_w^\lambda s_\lambda(\mathbf{x})$$

 $g_w^{\lambda} = |\{T \in SSYT^n(\lambda')| \text{ column reading of } T \equiv w\}|$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Schur positivity

Schur positivity (Fomin, Greene 1998)

$$\mathfrak{G}_w(\mathbf{x},eta) = \sum_\lambda eta^{|\lambda|-\ell(w)} g_w^\lambda s_\lambda(\mathbf{x})$$

$$g_w^\lambda = |\{T \in \mathsf{SSYT}^n(\lambda')| \text{ column reading of } T \equiv w\}$$

$$\mathfrak{G}_{132}(\mathbf{x},\beta) = s_{21} + \beta(2s_{211} + s_{22}) + \beta^2(3s_{2111} + 2s_{221}) + \cdots$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

Examples

• $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding

• 22132

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

- $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding
- 22132 ≡ 2132

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

- $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding
- $22132 \equiv 2132 \equiv 2312$

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

- $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding
- $22132 \equiv 2132 \equiv 2312$ is 321-avoiding

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

Examples

- $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding
- $22132 \equiv 2132 \equiv 2312$ is 321-avoiding

Definition

 $\mathcal{H}^{m,\star}$ = set of decreasing factorizations into *m* factors for 321-avoiding *w*

321-avoiding Hecke words (braid-free)

Definition

 $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i + 1 i for any $i \in [n - 1]$.

Examples

- $1321 \equiv 3121 \equiv 3212$ is not 321-avoiding
- $22132 \equiv 2132 \equiv 2312$ is 321-avoiding

Definition

 $\mathcal{H}^{m,\star}$ = set of decreasing factorizations into *m* factors for 321-avoiding *w*

- ()(1)(21) $\in \mathcal{H}^3, \notin \mathcal{H}^{3,\star}$
- (31)(2) $\in \mathcal{H}^{2,\star}$
- (2)(21)(32) $\in \mathcal{H}^{3,\star}$

*-Crystal on $\mathcal{H}^{m,\star}$ (Morse, Pan, Poh, S.)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

*-Crystal on $\mathcal{H}^{m,\star}$ (Morse, Pan, Poh, S.)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Example

• (1)(32)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Example

• (1)(32) $\stackrel{\text{bracket}}{\longrightarrow}$ (1)(32)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

• (1)(32)
$$\stackrel{\text{bracket}}{\longrightarrow}$$
 (1)(32) $\stackrel{f_1^{\star}}{\longrightarrow}$ (31)(2)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Example

• (1)(32)
$$\stackrel{\text{bracket}}{\longrightarrow}$$
 (1)(32) $\stackrel{f_1^{\star}}{\longrightarrow}$ (31)(2)

• (7532)(621)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Example

• (1)(32)
$$\stackrel{\text{bracket}}{\longrightarrow}$$
 (1)(32) $\stackrel{f_1^{\star}}{\longrightarrow}$ (31)(2)

● (7532)(621) ^{bracket} (7532)(621)

Bracketing rule on $h^m \dots h^{i+1} h^i \dots h^1$

- Start with the **largest** letter *b* in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such *a*, then *b* is unpaired.
- **2** Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x : largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

Example

• (1)(32)
$$\stackrel{\text{bracket}}{\longrightarrow}$$
 (1)(32) $\stackrel{f_1^{\star}}{\longrightarrow}$ (31)(2)

• $(7532)(621) \xrightarrow{\text{bracket}} (7532)(621) \xrightarrow{f_1^*} (75321)(61)$

-

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vertices and edges

$$w = 132, \ \beta^{1}$$

(3,1)(3,2)()
$$\mathfrak{G}_{132}(\mathbf{x},\beta) = s_{21} + \beta(2s_{211} + s_{22}) + \beta^{2}(3s_{2111} + 2s_{221}) + \cdots$$

(3,1)(1)(2)

1

- (3,1)(2)(2)
- (3,1)(3)(2)
- (1)(3,1)(2)
- (1)(3,2)(2)
- (3)(3,1)(2)
- (3,1)()(3,2)
- (1)(1)(3,2)
- (1)(3)(3,2)
- (3)(1)(3,2)
- ()(3,1)(3,2)

Vertices and edges

w = 132, β^1	$(\beta_{1}, \beta_{2}) = \alpha_{1} + \beta(2\alpha_{2})$	$(\beta \beta \beta) + \beta^2 (3 \beta \beta \beta \beta) + \beta^2 (3 \beta \beta \beta \beta \beta)$	
(3,1)(3,2)()	$O_{132}(\mathbf{x}, p) = S_{21} + p(2S_{21})$	$(1 + s_{22}) + \beta^2 (3s_{2111} + 2s_{221}) + \cdots$	•
(3,1)(1)(2)	()(3,1)(3,2)	(1)(1)(3,2) $(1)(3)(3,2)$	
(3,1)(2)(2)	2	1 1	
(3,1)(3)(2)	(2)(1)(2,0)	(1)(2,1)(3) $(1)(2,3)(3)$	
(1)(3,1)(2)	(3)(1)(3,2)	(1)(3,1)(2) $(1)(3,2)(2)$	
(1)(3,2)(2)	2 1	2 2	
(3)(3,1)(2)	(3,1)()(3,2) $(3)(3,1)(2)$	(3,1)(1)(2) $(3,1)(2)(2)$	
3 (3,1)()(3,2)	1 2		
(1)(1)(3,2)			
(1)(3)(3,2)	(3,1)(3)(2)		
(3)(1)(3,2)	1		
()(3,1)(3,2)	(3,1)(3,2)()	< □ > < 個 > < 필 > < 필 > < 필 > · 9 및 · 9 및	C

イロト イロト イヨト イヨト 三日

Outline

2 Crystal for Stanley symmetric functions

3 Crystal for Grothendieck polynomials

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} \mathbf{x}^{\mathsf{wt}(T)}$$
(Buch 2002)

 $SVT(\nu/\lambda) =$ set of semistandard set-valued tableaux of shape ν/λ Excess in T is ex(T)

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} \mathbf{x}^{\mathsf{wt}(T)}$$
(Buch 2002)

 $SVT(\nu/\lambda) =$ set of semistandard set-valued tableaux of shape ν/λ Excess in T is ex(T)

Semistandard set-valued tableaux SVT(ν/λ)

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

$$\begin{array}{c|c} C \\ \hline A & B \end{array} \max(A) \leqslant \min(B), \max(A) < \min(C) \end{array}$$

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} \mathbf{x}^{\mathsf{wt}(T)}$$
(Buch 2002)

 $SVT(\nu/\lambda) =$ set of semistandard set-valued tableaux of shape ν/λ Excess in T is ex(T)

Semistandard set-valued tableaux SVT(ν/λ)

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

$$\begin{array}{|c|} \hline C \\ \hline A & B \end{array} \max(A) \leqslant \min(B), \max(A) < \min(C) \end{array}$$

Example (Which one is a valid filling?)

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} \mathbf{x}^{\mathsf{wt}(T)}$$
(Buch 2002)

 $SVT(\nu/\lambda) =$ set of semistandard set-valued tableaux of shape ν/λ Excess in T is ex(T)

Semistandard set-valued tableaux SVT(ν/λ)

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

$$\begin{array}{|c|} \hline C \\ \hline A & B \end{array} \max(A) \leqslant \min(B), \max(A) < \min(C) \end{array}$$

Example (Which one is a valid filling?)

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} \mathbf{x}^{\mathsf{wt}(T)}$$
(Buch 2002)

 $SVT(\nu/\lambda) =$ set of semistandard set-valued tableaux of shape ν/λ Excess in T is ex(T)

Semistandard set-valued tableaux SVT(ν/λ)

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

$$\begin{array}{|c|}\hline C \\\hline A & B \end{array} \max(A) \leqslant \min(B), \ \max(A) < \min(C)$$

Example (Which one is a valid filling?)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Crystal structure on SVT (Monical, Pechenik, Scrimshaw)

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Crystal structure on SVT (Monical, Pechenik, Scrimshaw)

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both i, i + 1, then *move* the i over and turn it into i + 1

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

Crystal operator f_i

- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both i, i + 1, then *move* the i over and turn it into i + 1

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

Crystal operator f_i

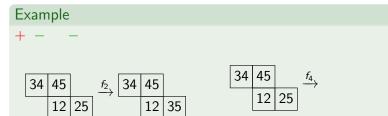
- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both i, i + 1, then *move* the i over and turn it into i + 1

Example + - - $34 45 \xrightarrow{f_2} \xrightarrow{f_2} 12 25$

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both i, i + 1, then *move* the i over and turn it into i + 1



Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both *i*, *i* + 1, then *move* the *i* over and turn it into *i* + 1

Signature rule

Assign – to every column of T containing an *i* but not an i + 1. Assign + to every column of T containing an i + 1 but not an *i*. Successively pair each + that is adjacent to a –.

- changes the rightmost unpaired i to i + 1, except
- if its right neighbor contains both *i*, *i* + 1, then *move* the *i* over and turn it into *i* + 1

Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2019)

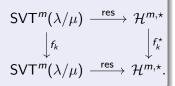
The crystal on skew semistandard set-valued

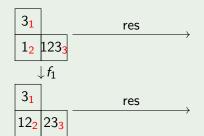
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2019)

The crystal on skew semistandard set-valued

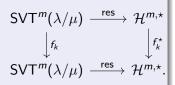


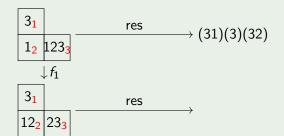


Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2019)

The crystal on skew semistandard set-valued tableaux and the crystal on decreasing factorizations $\mathcal{H}^{m,\star}$ intertwine under the residue map. That is, the following diagram commutes:

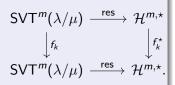


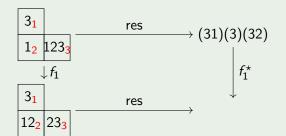


Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2019)

The crystal on skew semistandard set-valued tableaux and the crystal on decreasing factorizations $\mathcal{H}^{m,\star}$ intertwine under the residue map. That is, the following diagram commutes:

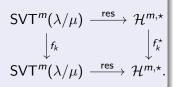


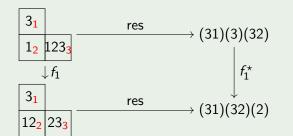


Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2019)

The crystal on skew semistandard set-valued tableaux and the crystal on decreasing factorizations $\mathcal{H}^{m,\star}$ intertwine under the residue map. That is, the following diagram commutes:





▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

*-Insertion

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} 3 & 3 & 2 & 2 & 1 & 1 \\ 4 & 2 & 4 & 2 & 3 & 1 \end{bmatrix}$$

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

Example

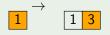
$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} 3 & 3 & 2 & 2 & 1 & \mathbf{1} \\ 4 & 2 & 4 & 2 & 3 & \mathbf{1} \end{bmatrix}$$

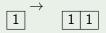
1

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} 3 & 3 & 2 & 2 & \mathbf{1} & 1 \\ 4 & 2 & 4 & 2 & \mathbf{3} & 1 \end{bmatrix}$$

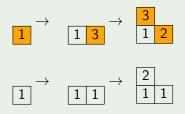




Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{vmatrix} 3 & 3 & 2 & 2 & 1 & 1 \\ 4 & 2 & 4 & 2 & 3 & 1 \end{vmatrix}$$



Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- **2** $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} 3 & 3 & 2 & 2 & 1 \\ 4 & 2 & 4 & 2 & 3 \end{bmatrix}$$

$$\rightarrow \qquad \boxed{1 \ 3} \rightarrow \qquad \boxed{3} \qquad \boxed{1 \ 2} \rightarrow \qquad \boxed{3} \qquad \boxed{1 \ 2 \ 4}$$

$$\rightarrow \qquad \boxed{1 \ 1} \rightarrow \qquad \boxed{2} \qquad \boxed{2} \qquad \boxed{1 \ 1} \rightarrow \qquad \boxed{2} \qquad \boxed{1 \ 1} \qquad \boxed{3} \qquad$$

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- 2 $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} 3 & 3 & 2 & 2 & 1 & 1 \\ 4 & 2 & 4 & 2 & 3 & 1 \end{bmatrix}$$

$$\overrightarrow{\mathbf{h}} \rightarrow \begin{array}{c} 3 & 3 & - & 3 \\ 1 & 2 & 1 & 2 & 4 \\ \hline 1 & 2 & 4 & - & 1 \\ 1 & 2 & 4 & - & 1 \\ \hline 1 & 2 & 4 & - & - & - \\ \hline 1 & 1 & - & 1 & - & 2 \\ \hline 1 & 1 & - & 2 & - & - & 3 \\ \hline 1 & 1 & 2 & - & - & - & - \\ \hline 1 & 1 & 2 & - & - & - \\ \hline 1 & 1 & 2 & - & - & - \\ \hline 1$$

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- 2 $x \notin R$, bump the minimal z > x (proceed to the next row)
- **③** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} \mathbf{3} & \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{1} & \mathbf{1} \\ \mathbf{4} & \mathbf{2} & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{1} \end{bmatrix}$$

$$\xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} & \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} & \mathbf{2} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array} \xrightarrow{\mathbf{4}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{2}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \begin{array}{c} \mathbf{3} \\ \mathbf{3} \end{array} \xrightarrow{\mathbf{3}} \end{array}$$

Association with *-crystal

Theorem (Morse, Pan, Poh, S. 2019)

The following diagram commutes:

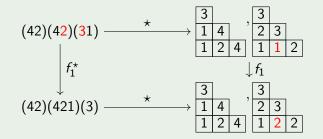
$$\begin{array}{ccc} \mathcal{H}^{m,\star} & \stackrel{Q^{\star}}{\longrightarrow} & \mathsf{SSYT}^m \\ & & & & \downarrow^{f_i} \\ \mathcal{H}^{m,\star} & \stackrel{Q^{\star}}{\longrightarrow} & \mathsf{SSYT}^m \end{array}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Association with *-crystal

The following diagram commutes:

$$\begin{array}{ccc} \mathcal{H}^{m,\star} & \stackrel{Q^{\star}}{\longrightarrow} & \mathsf{SSYT}^m \\ & & & & \downarrow f_i \\ \mathcal{H}^{m,\star} & \stackrel{Q^{\star}}{\longrightarrow} & \mathsf{SSYT}^m \end{array}$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uncrowding SVT

Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

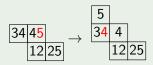
- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.

Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.

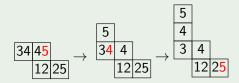
Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.



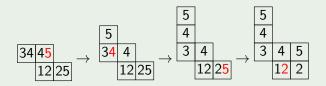
Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.



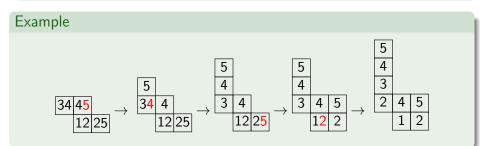
Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.



Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in *T* containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete x and perform RSK algorithm into the rows above. Repeat.
- Result is a single-valued skew tableau.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2019) Let $T \in SVT^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2019) Let $T \in SVT^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.

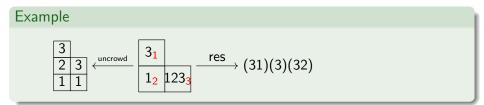
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2019) Let $T \in SVT^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.

Connection to uncrowding map

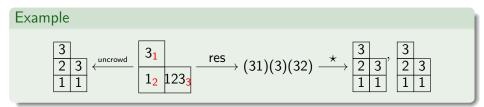
Theorem (Morse, Pan, Poh, S. 2019) Let $T \in SVT^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2019) Let $T \in SVT^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hecke insertion (Buch 2008, Patrias, Pylyavskyy 2016)

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hecke insertion (Buch 2008, Patrias, Pylyavskyy 2016)

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

 $\mathcal{H}^m \longleftrightarrow (P,Q)$

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P,Q)$$

$$\mathbf{h} = (2)(31)()(32) = \begin{bmatrix} 4 & 3 & 3 & 1 & 1 \\ 2 & 3 & 1 & 3 & 2 \end{bmatrix}.$$

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P,Q)$$

Example

$$\mathbf{h} = (2)(31)()(32) = \begin{bmatrix} 4 & 3 & 3 & 1 & \mathbf{1} \\ 2 & 3 & 1 & 3 & \mathbf{2} \end{bmatrix}$$

1

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P, Q)$$

Example $h = (2)(31)()(32) = \begin{bmatrix} 4 & 3 & 3 & 1 & 1 \\ 2 & 3 & 1 & 3 & 2 \end{bmatrix}.$ $2 \xrightarrow{\rightarrow} 2 3$ $1 \xrightarrow{\rightarrow} 1 1$

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P, Q)$$

Example $h = (2)(31)()(32) = \begin{bmatrix} 4 & 3 & 3 & 1 & 1 \\ 2 & 3 & 1 & 3 & 2 \end{bmatrix}.$ $2 \xrightarrow{} 2 \xrightarrow{} 2 \xrightarrow{} 2 \xrightarrow{} 1 \xrightarrow{} 3$ $1 \xrightarrow{} 1 \xrightarrow{} 1 \xrightarrow{} 3$

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P, Q)$$

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P, Q)$$

Hecke insertion and the residue map

Theorem (Morse, Pan, Poh, S. 2019)

Theorem (Morse, Pan, Poh, S. 2019)

Let $T \in SVT(\lambda)$ and $[\mathbf{k}, \mathbf{h}]^t = res(T)$. Apply Hecke row insertion from the right on $[\mathbf{k}, \mathbf{h}]^t$ to obtain the pair of tableaux (P, Q). Then Q = T.

$$T = \boxed{\begin{array}{c} 2_1 \ 4_2 \\ \hline 1_2 \ 23_3 \end{array}} \xrightarrow{\text{res}}$$

Theorem (Morse, Pan, Poh, S. 2019)

Let $T \in SVT(\lambda)$ and $[\mathbf{k}, \mathbf{h}]^t = res(T)$. Apply Hecke row insertion from the right on $[\mathbf{k}, \mathbf{h}]^t$ to obtain the pair of tableaux (P, Q). Then Q = T.

$$T = \boxed{\begin{array}{c}2_1 \ 4_2\\1_2 \ 23_3\end{array}} \xrightarrow{\text{res}} (2)(3)(31)(2) = \begin{bmatrix}4 & 3 & 2 & 2 & 1\\2 & 3 & 3 & 1 & 2\end{bmatrix}$$

2

1

(日)

э

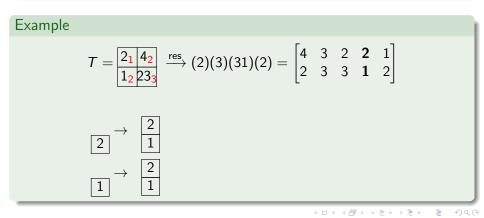
Hecke insertion and the residue map

Theorem (Morse, Pan, Poh, S. 2019)

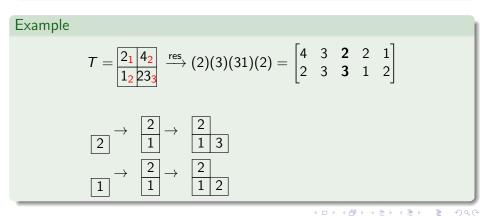
Let $T \in SVT(\lambda)$ and $[\mathbf{k}, \mathbf{h}]^t = res(T)$. Apply Hecke row insertion from the right on $[\mathbf{k}, \mathbf{h}]^t$ to obtain the pair of tableaux (P, Q). Then Q = T.

$$T = \begin{bmatrix} 2_1 & 4_2 \\ 1_2 & 23_3 \end{bmatrix} \xrightarrow{\text{res}} (2)(3)(31)(2) = \begin{bmatrix} 4 & 3 & 2 & 2 & \mathbf{1} \\ 2 & 3 & 3 & 1 & \mathbf{2} \end{bmatrix}$$

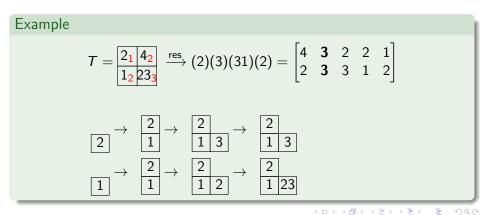
Theorem (Morse, Pan, Poh, S. 2019)



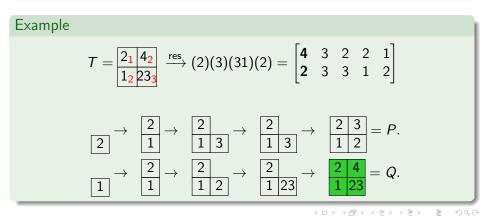
Theorem (Morse, Pan, Poh, S. 2019)



Theorem (Morse, Pan, Poh, S. 2019)



Theorem (Morse, Pan, Poh, S. 2019)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Future Work

• Crystal structure for the non-321 avoiding case (beyond skew shapes)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Future Work

- Crystal structure for the non-321 avoiding case (beyond skew shapes)
- Demazure crystal structure to compute the intersection number?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you !