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Describe the maps from a group to the general linear group

(the possible linear actions of the group on a vector space).

Zla e

and S}, representations can be broken down

iNto Irreducible representations

» the irreducible representations of general linear
oroup (F1,, and symmetric group S} are closely related
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ble representations of Gl,, and S are
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by partitions

the maps are characterized by a small number
of values called ‘characters’



Combinatorics
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The Hopf algebra of symmetric functions

symmetric polynomials €———>® oget rid of variables

every symmetric polynomial can be written as a polynomial in:
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The Hopf algebra of symmetric functions

symmetric polynomials —————P® get rid of variables
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Schur functions encode characters

B X, Z g (D pma(T) | pma(T)
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CST; = column strict tableaux, shape A , entries in {1,2,..., n}
m;(T") = number of cells with label 2 in T

n




Frobenius character map

Y O — Z character of a symmetric group representation
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Schur-Weyl duality

seneral linear group T symmetric group
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Unsolved problems in combinatorial
representation theory
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partition algebra SW-duality (1990’s +)

symmetric group <€

>  partition algebra
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Symmetric group characters as symmetric functions

Question: Is there a basis of the symmetric functions takes
the place of the Schur functions In this setup?

Original answer: 5y := lim F,, ' (s(u_jajn)
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Practical definitions of the irreducible character basis

1

orthonormal wrt scalar product  (f,9)q := o

Z f[Eg]g[Ea] + Gram—-Schmidt orthonormalization
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Expansion formula into the irreducible character basis
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Combinatorial interpretation of §)\ §a1 §a2 A gag

coefficients are gy x(a1)(az)-+(ar) = number of multiset tableaux satisfying
eshape (n—|v|,v)
econtent A\ barred (ai,as,...,ay) unbarred
® |attice condition
® no singletons first row
® no repeated entries In any cell

Example: A= (2,2) a1 =2 a9 =1

coefficient of S4 in $(2,2)5251 = 9

1 [11[21]22 1(1]21[2 1(1]1]21 1(1]1]22
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the Littlewood-Richardson rule

S)\S,ul S,UZ v S,ur e other Sff

combinatorial interpretation of LHS = skew
column strict tableaux of shape fy/)\
content ([

“lattice” not “lattice”

SASpu = Z Ssh(T)

ar

where the sum is over all “lattice”
column strict tableaux of shape ’Y/)\
and content )
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not ‘lattice”

a column strict tableau is “lattice” If the last r letters of the reading word
contains at least as many I1's as I+ 1's




Combinatorial interpretation of §)\ §a1 §a2 A gag

coefficients are gy x(a1)(az)--(ar) = number of multiset tableaux satisfying
eshape (n—|v|,v)
econtent A\ barred (ai,as,...,ay) unbarred
® |attice condition
® no singletons first row
® no repeated entries In any cell

Example: A= (2,2) a1 =2 a9 =1

coefficient of S4 in $(2,2)5251 = 9

1 [11[21]22 1(1]21[2 1(1]1]21 1(1]1]22
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(vague) Conjecture: There Is an additional condrtion such that this set of tableau
+ this condition Is a combinatorial interpretation for the coefficient g,y ,
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VWe have guides for developing this combinatorics: representation theory of partr
algebra, multiset partition algebra, symmetric group character basis and we need t
develop ot

S

Takeaway message

The following concepts have developed about representation/combinatorics
of the Littlewood-Richardson rule over nearly 80+ years of mathematics:
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operations of adding/removing a corner/row (Pieri rule)

reading words/lattice, plactic monoid and Jeu de Taguin
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