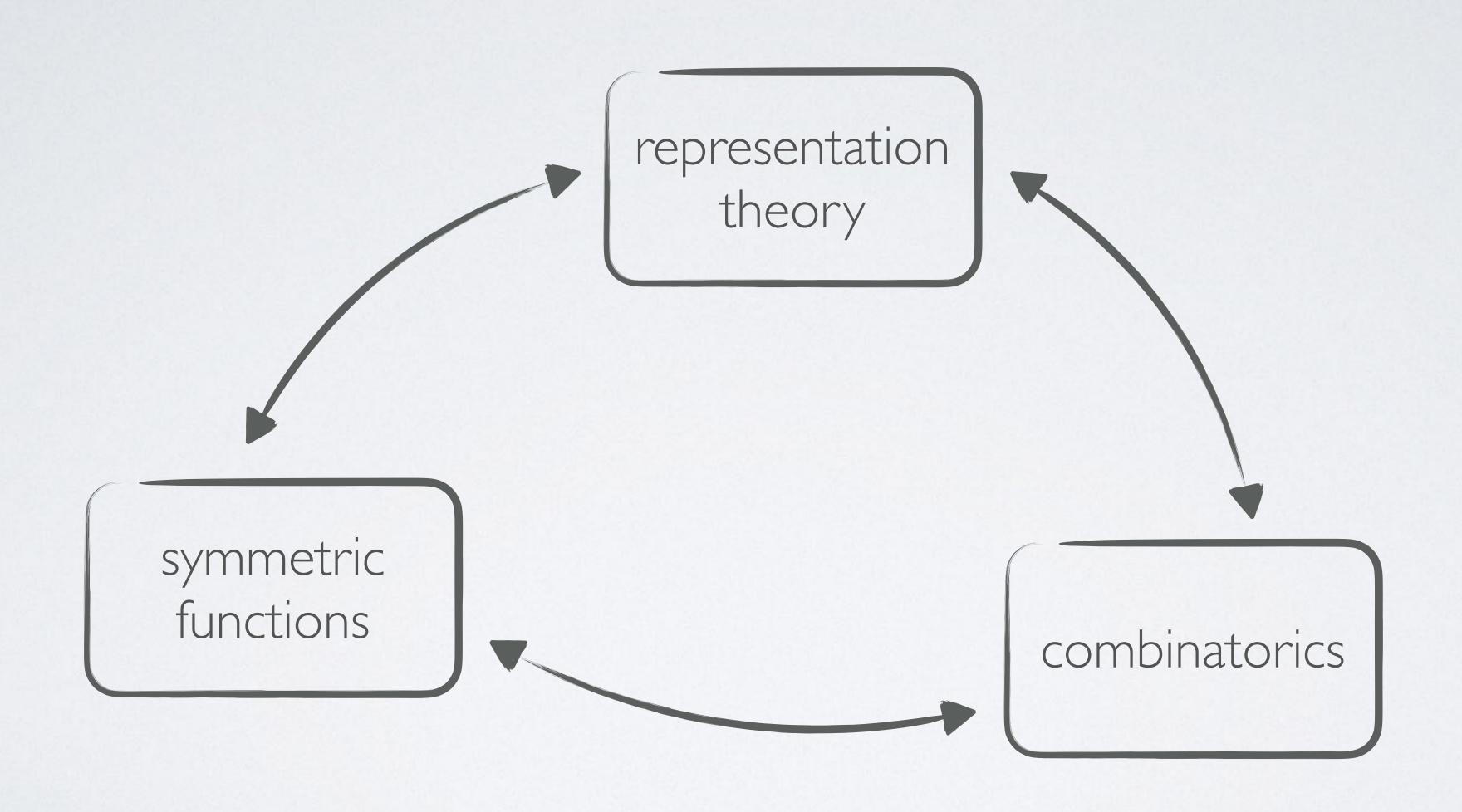
SYMMETRIC GROUP CHARACTERS AS SYMMETRIC FUNCTIONS

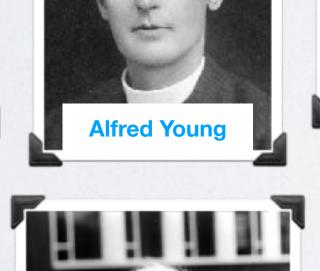
Mike Zabrocki (York University, Toronto) joint work with Rosa Orellana

Combinatorial representation theory



Basic idea of representation theory:





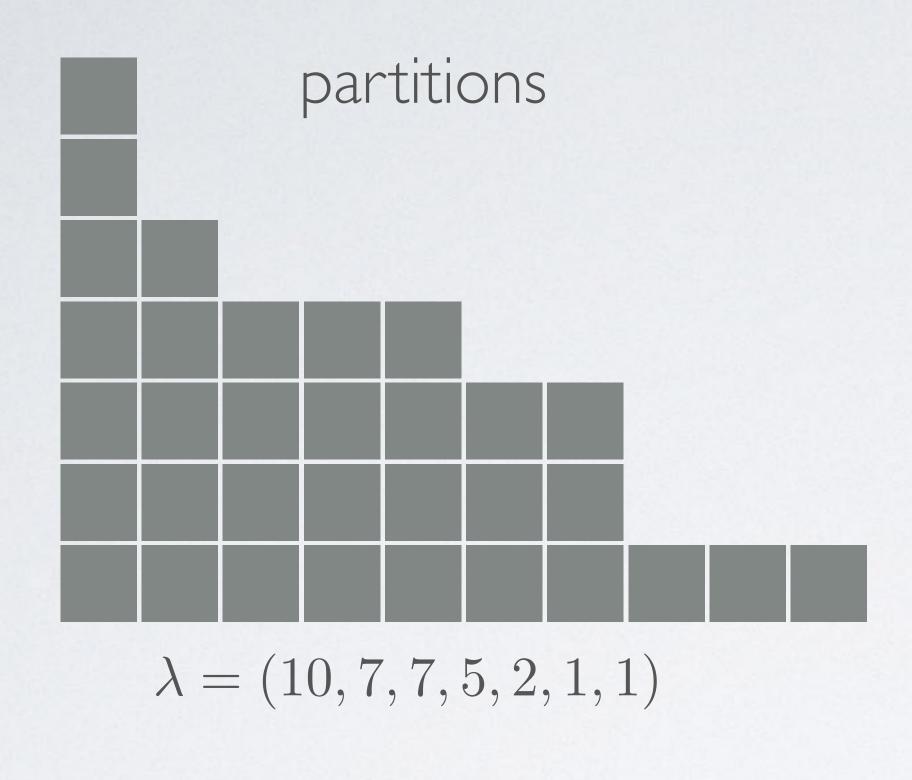


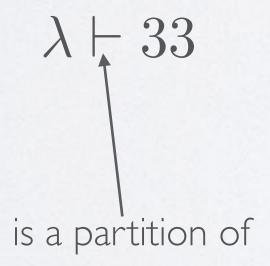


Describe the maps from a group to the general linear group (the possible linear actions of the group on a vector space).

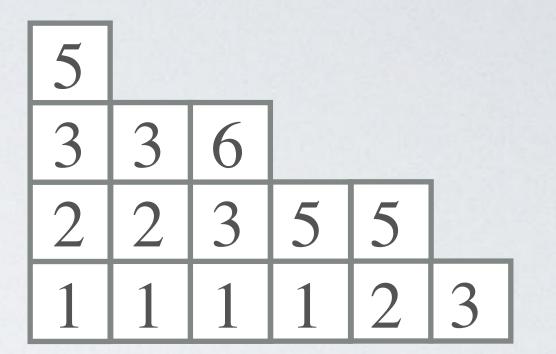
- all Gl_n and S_k representations can be broken down into irreducible representations
- the irreducible representations of general linear group Gl_n and symmetric group S_k are closely related
- irreducible representations of Gl_n and S_k are indexed by partitions
- the maps are characterized by a small number of values called 'characters'

Combinatorics





column strict tableaux



shape
$$\lambda = (6, 5, 3, 1)$$

content
$$(4, 3, 4, 0, 3, 1)$$

standard tableaux \Rightarrow content = (1^n)

6					
5	8	12			
3	4	11	14	15	
1	2	7	9	10	13

The Hopf algebra of symmetric functions

symmetric polynomials get rid of variables

power sum

$$p_r(x_1, x_2, \dots, x_n) = x_1^r + x_2^r + \dots + x_n^r$$
$$p_{\mu} = p_{\mu_1} p_{\mu_2} \cdots p_{\mu_{\ell(\mu)}}$$

every symmetric polynomial can be written as a polynomial in:

$$p_1(x_1, x_2, \ldots, x_n), p_2(x_1, x_2, \ldots, x_n), \ldots, p_n(x_1, x_2, \ldots, x_n)$$

$$p_{a_1}p_{a_2}\cdots p_{a_r}$$

$$p_{\mu}=p_{\mu_1}p_{\mu_2}\cdots p_{\mu_{\ell(\mu)}}$$
 span
$$p_{\mu_1}\geq p_{\mu_2}\geq \cdots \geq p_{\ell(\mu)}$$
 basis

$$Sym = \mathbb{Q}[p_1, p_2, p_3, \ldots]$$

$$p_{\lambda}p_{\mu} = p_{\lambda \uplus \mu} \qquad \qquad \Delta(p_r) = p_r \otimes 1 + 1 \otimes p_r \qquad \qquad \frac{p_{\mu}}{z_{\mu}} * \frac{p_{\gamma}}{z_{\gamma}} = \begin{cases} \frac{p_{\mu}}{z_{\mu}} & \text{if } \gamma = \mu \\ 0 & \text{else} \end{cases}$$

The Hopf algebra of symmetric functions

symmetric polynomials get rid of variables

power sum

$$p_r(x_1, x_2, \dots, x_n) = x_1^r + x_2^r + \dots + x_n^r$$
$$p_{\mu} = p_{\mu_1} p_{\mu_2} \cdots p_{\mu_{\ell(\mu)}}$$

homogeneous

$$h_r(x_1, x_2, \dots, x_n) = \sum_{\substack{1 \le i_1 \le i_2 \le \dots \le i_r \le n \\ h_{\mu} = h_{\mu_1} h_{\mu_2} \dots h_{\mu_{\ell(\mu)}}}} x_{i_1} x_{i_2} \dots x_{i_r}$$

Schur function

$$s_{\lambda}(x_1, x_2, \dots, x_n) = \sum_{T \in CST_n^{\lambda}} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

$$s_{\lambda} = \sum_{\mu \vdash |\lambda|} \chi^{\lambda}(\mu) \frac{p_{\mu}}{z_{\mu}}$$

 $h_r = \sum_{\lambda \vdash r} \frac{p_\lambda}{z_\lambda}$

 $CST_n^{\lambda} = \text{column strict tableaux, shape} \quad \lambda$, entries in $\{1,2,\ldots,n\}$ $m_i(T) = \text{number of cells with label} \quad i$ in T

$$Sym = \mathbb{Q}[p_1, p_2, p_3, \ldots]$$

$$p_{\lambda}p_{\mu}=p_{\lambda \uplus \mu}$$

$$\Delta(p_r) = p_r \otimes 1 + 1 \otimes p_r$$

$$\frac{p_{\mu}}{z_{\mu}} * \frac{p_{\gamma}}{z_{\gamma}} = \begin{cases} \frac{p_{\mu}}{z_{\mu}} & \text{if } \gamma = \mu \\ 0 & \text{else} \end{cases}$$

Schur functions encode characters

$$s_{\lambda}(x_1, x_2, \dots, x_n) = \sum_{T \in CST_n^{\lambda}} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

 $CST_n^{\lambda} = \text{column strict tableaux, shape} \quad \lambda \text{ , entries in } \{1, 2, \dots, n\}$ $m_i(T)$ = number of cells with label i in T

general linear group characters

$$A \in Gl_n(\mathbb{C})$$

 $s_{\lambda}[\Xi_A]$ are Gl_n characters

$$\Xi_A = (\zeta_1, \zeta_2, \dots, \zeta_n)$$
 eigenvalues (A)

symmetric group characters

$$\sigma \in S_k$$
 $p_\mu(x_1,x_2,\ldots,x_n) = \sum_{\lambda \vdash k} \chi_{S_k}^\lambda(\mu) s_\lambda(x_1,x_2,\ldots,x_n)$ $\mu = (\mu_1,\mu_2,\ldots,\mu_{\ell(\mu)}) \vdash k$ cycle type (σ) $\gamma_S^\lambda(\mu)$ are S_k characters

$$\chi_{S_k}^{\lambda}(\mu)$$
 are S_k characters

Frobenius character map

$$\chi:S_k \to \mathbb{Z}$$

character of a symmetric group representation

$$\mathcal{F}_{k}(\chi) = \frac{1}{k!} \sum_{\sigma \in S_{k}} \chi(\sigma) p_{cyc(\sigma)}$$

irreducibles are encoded by Schur functions

$$\mathcal{F}_k(\chi^\lambda) = s_\lambda$$

induction, restriction, tensor = product, coproduct, inner product

$$\mathcal{F}_{k+\ell}(Ind_{S_k\times S_\ell}^{S_{k+\ell}}\chi_1\otimes\chi_2)=\mathcal{F}_k(\chi_1)\mathcal{F}_\ell(\chi_2)$$

$$\mathcal{F}(\bigoplus_{r=0}^k Res_{S_{k-r}\times S_r}^{S_k}\chi) = \Delta(\mathcal{F}_k(\chi))$$

$$\mathcal{F}_{k}(\chi_{1}\otimes\chi_{2})=\mathcal{F}_{k}(\chi_{1})*\mathcal{F}_{k}(\chi_{2})$$

Schur-Weyl duality

general linear group

symmetric group

$$A \in Gl_n(\mathbb{C})$$

$$\sigma \in S_k$$

 $V = \operatorname{span}_{\mathbb{C}}\{v_1, v_2, \dots, v_n\}$

$$A(v_i) = \sum_{j=1}^{n} a_{ij} v_j$$

$$\sigma(w_1 \otimes w_2 \otimes \cdots \otimes w_k) = w_{\sigma(1)} \otimes w_{\sigma(2)} \otimes \cdots \otimes w_{\sigma(k)}$$

$$V^{\otimes k} = \underbrace{V \otimes V \otimes \cdots \otimes V}_{k \text{ times}}$$

$$V^{\otimes k} \cong \bigoplus_{\lambda \vdash k} W_{Gl_n(\mathbb{C})}^{\lambda} \otimes W_{S_k}^{\lambda}$$

multiplicity of tensor of irreducibles of one =

restriction of irreducibles on the other

Unsolved problems in combinatorial representation theory

TENSOR $W_{S_n}^{\lambda} \otimes W_{S_n}^{\mu}$

RESTRICTION $Res \downarrow_{S_n}^{Gl_n} W_{Gl_n}^{\lambda}$

PLETHYSM composition of characters $s_{\lambda}[s_{\mu}]$

partition algebra SVV-duality (1990's +)

symmetric group

-> partition algebra

$$\sigma \in S_n$$

$$V = \operatorname{span}_{\mathbb{C}}\{v_1, v_2, \dots, v_n\}$$

$$\sigma(v_i) = v_{\sigma(i)}$$

$$d(v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4} \otimes v_{i_5} \otimes v_{i_6}) = \sum_{\vec{i}'} c_{\vec{i}'}^{\vec{i}} v_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}$$

$$\vec{i} \qquad \text{1} \quad \text{if } i_r = i_s \text{ when } r, s \text{ in same block of } d$$

$$c_{\vec{i'}}^{\vec{i}} = \begin{cases} 1 & \text{if } i_r = i_s \text{ when } r, s \text{ in same block of } d \\ 0 & \text{else} \end{cases}$$

$$d = \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_1'} \otimes v_{i_2'} \otimes v_{i_3'} \otimes v_{i_4'} \otimes v_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5'} \otimes v_{i_6'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5'} \otimes v_{i_6'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5} \otimes v_{i_6'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5} \otimes v_{i_6'} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in V_{i_5} \otimes v_{i_6'}} \bigcirc \bigcup_{o \in$$

$$V^{\otimes k} \cong \bigoplus_{\lambda \vdash n} W_{S_n}^{\lambda} \otimes W_{P_k(n)}^{\lambda}$$

multiplicity of tensor of irreducibles of one

restriction of irreducibles on the other

$$V^{\otimes k} = \underbrace{V \otimes V \otimes \cdots \otimes V}_{k \text{ times}}$$

Symmetric group characters as symmetric functions

Question: Is there a basis of the symmetric functions takes the place of the Schur functions in this setup?

Original answer:
$$\tilde{s}_{\lambda} := \lim_{n \to \infty} \mathcal{F}_n^{-1}(s_{(n-|\lambda|,\lambda)})$$

symmetric group characters

$$\sigma \in S_n \subset Gl_n(\mathbb{C})$$

$$\Xi_\mu = (\zeta_1, \zeta_2, \dots, \zeta_n) \quad \text{eigenvalues depend only on cycle type}$$
 eigenvalues depend only on cycle type

$$ilde{s}_{\lambda}[\Xi_{\mu}]$$
 are S_n characters $\chi_{S_n}^{(n-|\lambda|,\lambda)}(\mu)$

partition algebra characters

$$d_{(3,2,1,1)}=d\in P_k(n)$$

$$p_{\mu}(x_1, x_2, \dots, x_n) = \sum_{\lambda \vdash n} \chi_{P_k(n)}^{\lambda}(d_{\mu}) \tilde{s}_{\overline{\lambda}}(x_1, x_2, \dots, x_n)$$

 $\chi_{P_k(n)}^{\lambda}(d_{\mu}) \text{ are } P_k(n) \text{ characters}$

Practical definitions of the irreducible character basis

orthonormal wrt scalar product

$$\langle f,g
angle_{@}:=rac{1}{k!}\sum_{\sigma\in S_k}f[\Xi_{\sigma}]g[\Xi_{\sigma}]$$
 + Gram—Schmidt orthonormalization

various transition coefficients

$$\tilde{s}_{\lambda} = \sum_{\gamma \vdash n} \chi_{S_n}^{\lambda}(\gamma) \frac{\mathbf{p}_{\gamma}}{z_{\gamma}}$$

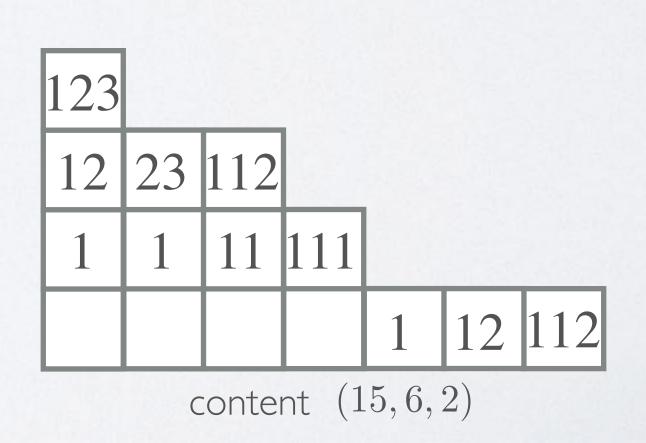
$$\mathbf{p}_{\gamma} = \prod_{i \geq 1} \mathbf{p}_{i^{n_i(\gamma)}}$$

$$\mathbf{p}_{i^r} = \sum_{k=0}^r (-1)^{r-k} i^k \binom{r}{k} \left(\frac{1}{i} \sum_{d|i} \mu(i/d) p_d\right)_k$$

$$p_{\mu} = \sum_{|\lambda| \le |\mu|} \chi_{P_{|\mu|}(n)}^{(n-|\lambda|,\lambda)} (d_{\mu}) \tilde{s}_{\lambda}$$

$$h_{\mu} = \sum_{T \in MST_{\mu}} \tilde{s}_{\overline{sh(T)}}$$

 MST_{μ} =multiset tableaux of content μ



Expansion formula into the irreducible character basis

$$f = \sum_{\lambda} \langle f, s_{(n-|\lambda|,\lambda)} [1 + h_1 + h_2 + \cdots] \rangle \tilde{s}_{\lambda} = \sum_{\lambda} \langle f, \tilde{s}_{\lambda} \rangle_{@} \tilde{s}_{\lambda}$$

$$s_{\mu} = \sum_{|\lambda| \leq |\mu|} r_{\lambda\mu} \tilde{s}_{\lambda} \qquad \text{``restriction problem''} \qquad Res \big\downarrow_{S_n}^{Gl_n} W_{Gl_n}^{\mu} \cong \bigoplus_{\lambda} (W_{S_n}^{\lambda})^{r_{\lambda\mu}}$$

$$\tilde{s}_{\lambda}\tilde{s}_{\mu} = \sum_{\gamma} \overline{g}_{\lambda\mu\gamma}\tilde{s}_{\gamma} \quad \text{``tensor problem''} \quad W_{S_n}^{(n-|\lambda|,\lambda)} \otimes W_{S_n}^{(n-|\mu|,\mu)} \cong \bigoplus_{\gamma} (W_{S_n}^{(n-|\gamma|,\gamma)})^{\overline{g}_{\lambda\mu\gamma}}$$

Combinatorial interpretation of $\tilde{s}_{\lambda}\tilde{s}_{a_1}\tilde{s}_{a_2}\cdots\tilde{s}_{a_\ell}$

coefficients are $\overline{g}_{\nu\lambda(a_1)(a_2)\cdots(a_\ell)}=$ number of multiset tableaux satisfying

- shape $(n |\nu|, \nu)$
- content λ barred $(a_1, a_2, \ldots, a_\ell)$ unbarred
- lattice condition
- no singletons first row
- no repeated entries in any cell

Example:
$$\lambda = (2,2)$$
 $a_1 = 2$ $a_2 = 1$

coefficient of
$$\tilde{s}_4$$
 in $\tilde{s}_{(2,2)}\tilde{s}_2\tilde{s}_1=5$

the Littlewood-Richardson rule

$$s_{\lambda}s_{\mu_1}s_{\mu_2}\cdots s_{\mu_r}=s_{\lambda}s_{\mu}+$$
 other stuff combinatorial interpretation of LHS = skew column strict tableaux of shape γ/λ content μ "lattice" not "lattice"

$$s_{\lambda}s_{\mu} = \sum s_{sh(T)}$$
 where the sum is over all "lattice" column strict tableaux of shape γ/λ and content μ

2	3	3							2	3	3			
	1	2	2							1	1	2		
			1	1	1							1	1	2
"lattice"								not "lattice"						

a column strict tableau is "lattice" if the last r letters of the reading word contains at least as many i's as i+1's

Combinatorial interpretation of $\tilde{s}_{\lambda}\tilde{s}_{a_1}\tilde{s}_{a_2}\cdots\tilde{s}_{a_\ell}$

coefficients are $\overline{g}_{\nu\lambda(a_1)(a_2)\cdots(a_\ell)}=$ number of multiset tableaux satisfying

- shape $(n |\nu|, \nu)$
- content λ barred $(a_1, a_2, \ldots, a_\ell)$ unbarred
- lattice condition
- no singletons first row
- no repeated entries in any cell

Example:
$$\lambda = (2, 2)$$
 $a_1 = 2$ $a_2 = 1$

coefficient of
$$\tilde{s}_4$$
 in $\tilde{s}_{(2,2)}\tilde{s}_2\tilde{s}_1=5$

(vague) Conjecture: There is an additional condition such that this set of tableau + this condition is a combinatorial interpretation for the coefficient $\overline{g}_{\nu\lambda\mu}$

Takeaway message

The following concepts have developed about representation/combinatorics of the Littlewood-Richardson rule over nearly 80+ years of mathematics:

operations of adding/removing a corner/row (Pieri rule) that are compatible with RSK insertion and evacuation on tableaux reading words/lattice, plactic monoid and Jeu de Taquin

Similar operations may need to be developed for set-valued and multiset valued tableaux to arrive at a combinatorial Kronecker product rule, restriction problem and plethysm

We have guides for developing this combinatorics: representation theory of partition algebra, multiset partition algebra, symmetric group character basis and we need to develop others

Thank you!

