Intermediate Algebraic Structure in the Restriction Problem

Nate Harman

University of Chicago

May 13, 2020

Nate Harman (UChicago)

Restriction Problem

May 13, 2020 1 / 18

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

Image: A matrix and A matrix

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

The matrix entries φ(g)_{i,j} of the representation are given by polynomials in the matrix entries g_{i',j'} of GL_n(C).

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

- The matrix entries φ(g)_{i,j} of the representation are given by polynomials in the matrix entries g_{i',j'} of GL_n(C).

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

- The matrix entries φ(g)_{i,j} of the representation are given by polynomials in the matrix entries g_{i',j'} of GL_n(C).
- Some control is the point of the second second

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

- The matrix entries φ(g)_{i,j} of the representation are given by polynomials in the matrix entries g_{i',j'} of GL_n(C).

Some control of the second secon

Let $\phi : GL_n(\mathbb{C}) \to GL_N(\mathbb{C})$ be a representation. The following are equivalent:

- The matrix entries φ(g)_{i,j} of the representation are given by polynomials in the matrix entries g_{i',j'} of GL_n(C).

One of the exists a strict polynomial functor Φ : Vect_C → Vect_C with φ = Φ(Cⁿ).

•
 • extends to a holomorphic map
 ~
 • Mat_{n×n}(ℂ) → Mat_{N×N}(ℂ) of multiplicative monoids.

Such representations are called polynomial representations.

Nate Harman (UChicago)

Irreducible polynomial representations are called *Weyl modules* $W_{\lambda} = W_{\lambda}(n).$

Image: A matrix and A matrix

Irreducible polynomial representations are called *Weyl modules* $W_{\lambda} = W_{\lambda}(n).$

• Indexed by partitions with at most *n* parts.

Irreducible polynomial representations are called *Weyl modules* $W_{\lambda} = W_{\lambda}(n).$

- Indexed by partitions with at most *n* parts.
- Functorial in *n*: $W_{\lambda}(n) \cong \mathbb{S}^{\lambda}(\mathbb{C}^n)$ where \mathbb{S}^{λ} denotes a Schur functor.

Irreducible polynomial representations are called Weyl modules $W_{\lambda} = W_{\lambda}(n).$

- Indexed by partitions with at most *n* parts.
- Functorial in *n*: $W_{\lambda}(n) \cong \mathbb{S}^{\lambda}(\mathbb{C}^n)$ where \mathbb{S}^{λ} denotes a Schur functor.
- Characters given by Schur polynomials. Explicitly:

$$\mathsf{tr}(\phi_{\lambda}(\mathsf{diag}(x_1, x_2, \dots, x_n)) = s_{\lambda}(x_1, x_2, \dots, x_n)$$

Irreducible polynomial representations are called *Weyl modules* $W_{\lambda} = W_{\lambda}(n)$.

- Indexed by partitions with at most *n* parts.
- Functorial in *n*: $W_{\lambda}(n) \cong \mathbb{S}^{\lambda}(\mathbb{C}^n)$ where \mathbb{S}^{λ} denotes a Schur functor.
- Characters given by Schur polynomials. Explicitly:

$$\mathsf{tr}(\phi_{\lambda}(\mathsf{diag}(x_1, x_2, \dots, x_n)) = s_{\lambda}(x_1, x_2, \dots, x_n)$$

• $d := |\lambda|$ is called the *degree*. It is also the degree of the matrix entries $\phi_{\lambda}(g)_{i,j}$ as polynomials in the matrix entries $g_{i,j}$.

Irreducible polynomial representations are called *Weyl modules* $W_{\lambda} = W_{\lambda}(n)$.

- Indexed by partitions with at most *n* parts.
- Functorial in *n*: $W_{\lambda}(n) \cong \mathbb{S}^{\lambda}(\mathbb{C}^n)$ where \mathbb{S}^{λ} denotes a Schur functor.
- Characters given by Schur polynomials. Explicitly:

$$\mathsf{tr}(\phi_{\lambda}(\mathsf{diag}(x_1, x_2, \dots, x_n)) = s_{\lambda}(x_1, x_2, \dots, x_n)$$

- $d := |\lambda|$ is called the *degree*. It is also the degree of the matrix entries $\phi_{\lambda}(g)_{i,j}$ as polynomials in the matrix entries $g_{i,j}$.
- The degree also controls the dimension growth as we vary *n*:

$$\dim(W_{\lambda}(n)) = \frac{f_{\lambda}}{d!}n^d + O(n^{d-1})$$

Irreducible representations of S_n are called *Specht modules* S^{λ} .

Irreducible representations of S_n are called *Specht modules* S^{λ} .

• Indexed by partitions λ of size n.

Irreducible representations of S_n are called *Specht modules* S^{λ} .

- Indexed by partitions λ of size n.
- Directly connected to representations of $GL_k(\mathbb{C})$ via Schur-Weyl duality. (This is NOT the relationship we are interested in today though.)

Irreducible representations of S_n are called *Specht modules* S^{λ} .

- Indexed by partitions λ of size n.
- Directly connected to representations of $GL_k(\mathbb{C})$ via Schur-Weyl duality. (This is NOT the relationship we are interested in today though.)

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ is a partition of size $k \ll n$, we let $\lambda[n] := (n - k, \lambda_1, \lambda_2, \dots, \lambda_\ell)$ denote the *padded* partition.

Irreducible representations of S_n are called *Specht modules* S^{λ} .

- Indexed by partitions λ of size n.
- Directly connected to representations of $GL_k(\mathbb{C})$ via Schur-Weyl duality. (This is NOT the relationship we are interested in today though.)

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ is a partition of size $k \ll n$, we let $\lambda[n] := (n - k, \lambda_1, \lambda_2, \dots, \lambda_\ell)$ denote the *padded* partition.

 As n varies the representations S^{λ[n]} are functorial in a certain sense made precise by the theory of FI-modules.

Irreducible representations of S_n are called *Specht modules* S^{λ} .

- Indexed by partitions λ of size n.
- Directly connected to representations of $GL_k(\mathbb{C})$ via Schur-Weyl duality. (This is NOT the relationship we are interested in today though.)

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ is a partition of size $k \ll n$, we let $\lambda[n] := (n - k, \lambda_1, \lambda_2, \dots, \lambda_\ell)$ denote the *padded* partition.

- As n varies the representations S^{λ[n]} are functorial in a certain sense made precise by the theory of FI-modules.
- For *n* sufficiently large the dimension of $S^{\lambda[n]}$ is a polynomial in *n*. Explicitly if $d = |\lambda|$ then

$$\dim(S^{\lambda[n]}) = \frac{f_{\lambda}}{d!}n^d + O(n^{d-1})$$

 S_n sits naturally inside $GL_n(\mathbb{C})$ as the group of permutation matrices.

Goal: Understand the restriction of polynomial representations from $GL_n(\mathbb{C})$ to S_n .

$$\operatorname{\mathsf{Res}}_{\mathcal{S}_n}^{GL_n(\mathbb{C})}(W_\lambda)\cong \bigoplus_\mu (S^\mu)^{\oplus m_{\lambda,\mu}}$$

 S_n sits naturally inside $GL_n(\mathbb{C})$ as the group of permutation matrices.

Goal: Understand the restriction of polynomial representations from $GL_n(\mathbb{C})$ to S_n .

$$\operatorname{\mathsf{Res}}_{\mathcal{S}_n}^{GL_n(\mathbb{C})}(W_{\lambda}) \cong \bigoplus_{\mu} (S^{\mu})^{\oplus m_{\lambda,\mu}}$$

The Restriction Problem: Find a positive combinatorial interpretation for the multiplicities $m_{\lambda,\mu}$.

Idea: Polynomial representations extend from the $GL_n(\mathbb{C})$ to $Mat_{n \times n}(\mathbb{C})$, including linear maps not of full rank. Is there a symmetric group analog?

Idea: Polynomial representations extend from the $GL_n(\mathbb{C})$ to $Mat_{n \times n}(\mathbb{C})$, including linear maps not of full rank. Is there a symmetric group analog?

The rook monoid R_n is the monoid of $n \times n$ matrices with at most one 1 in each row and column and zeroes otherwise (with the multiplication operation).

Alternatively we could define R_n as the monoid of partially defined injective functions from $\{1, 2, ..., n\}$ to itself.

Idea: Polynomial representations extend from the $GL_n(\mathbb{C})$ to $Mat_{n \times n}(\mathbb{C})$, including linear maps not of full rank. Is there a symmetric group analog?

The rook monoid R_n is the monoid of $n \times n$ matrices with at most one 1 in each row and column and zeroes otherwise (with the multiplication operation).

Alternatively we could define R_n as the monoid of partially defined injective functions from $\{1, 2, ..., n\}$ to itself.

Easy observation: Polynomial $GL_n(\mathbb{C})$ representations can be "restricted" to the R_n .

■ If λ is a partition of $k \leq n$ the S_n -representation $Ind_{S_k \times S_{n-k}}^{S_n}(S^{\lambda} \boxtimes S^{(n-k)})$ can be upgraded to an irreducible representation $V_{\lambda}(n)$ of R_n .

- If λ is a partition of $k \leq n$ the S_n -representation $Ind_{S_k \times S_{n-k}}^{S_n}(S^{\lambda} \boxtimes S^{(n-k)})$ can be upgraded to an irreducible representation $V_{\lambda}(n)$ of R_n .
- As λ runs over all partitions of size at most n these V_λ(n) form a complete list of the irreducible representations of R_n.

- If λ is a partition of $k \leq n$ the S_n -representation $Ind_{S_k \times S_{n-k}}^{S_n}(S^{\lambda} \boxtimes S^{(n-k)})$ can be upgraded to an irreducible representation $V_{\lambda}(n)$ of R_n .
- As λ runs over all partitions of size at most n these V_λ(n) form a complete list of the irreducible representations of R_n.
- 3 Representations of R_n are completely reducible.

- If λ is a partition of $k \leq n$ the S_n -representation $Ind_{S_k \times S_{n-k}}^{S_n}(S^{\lambda} \boxtimes S^{(n-k)})$ can be upgraded to an irreducible representation $V_{\lambda}(n)$ of R_n .
- As λ runs over all partitions of size at most n these V_λ(n) form a complete list of the irreducible representations of R_n.

8 Representations of R_n are completely reducible.

In particular note that restriction from R_n to S_n is just given by the Pieri rule.

The Rank Filtration

Let $I_{< r}(n) \subset R_n$ be the set of matrices in R_n of rank less than r. This forms a two-sided ideal.

The Rank Filtration

Let $I_{< r}(n) \subset R_n$ be the set of matrices in R_n of rank less than r. This forms a two-sided ideal.

Any representation M of R_n has a canonical filtration given by:

$$M_{\geq r} := \{m \in M \mid I_{< r}(n) \cdot m = 0\}$$

In terms of the classification off irreducible representations $M_{\geq r}$ is the sum of all the irreducible subspaces of M of the form V_{λ} with $|\lambda| \geq r$.

The Rank Filtration

Let $I_{< r}(n) \subset R_n$ be the set of matrices in R_n of rank less than r. This forms a two-sided ideal.

Any representation M of R_n has a canonical filtration given by:

$$M_{\geq r} := \{ m \in M \mid I_{< r}(n) \cdot m = 0 \}$$

In terms of the classification off irreducible representations $M_{\geq r}$ is the sum of all the irreducible subspaces of M of the form V_{λ} with $|\lambda| \geq r$.

In the context of the restriction problem, if λ is a partition of degree d and ℓ parts then:

$$W_{\lambda}(n)_{\geq d} \cong V_{\lambda}(n) \text{ and } W_{\lambda}(n)_{\geq \ell} = W_{\lambda}(n)$$

As we vary *n*, the polynomial representations of $GL_n(\mathbb{C})$ fit together to form strict polynomial functors $vect_{\mathbb{C}} \rightarrow vect_{\mathbb{C}}$. What is the symmetric group analog?

As we vary *n*, the polynomial representations of $GL_n(\mathbb{C})$ fit together to form strict polynomial functors $vect_{\mathbb{C}} \rightarrow vect_{\mathbb{C}}$. What is the symmetric group analog?

A categorical reformulation: A representation of S_n is equivalent to a functor from the category of *n*-element sets with bijections to vector spaces.

As we vary *n*, the polynomial representations of $GL_n(\mathbb{C})$ fit together to form strict polynomial functors $vect_{\mathbb{C}} \rightarrow vect_{\mathbb{C}}$. What is the symmetric group analog?

A categorical reformulation: A representation of S_n is equivalent to a functor from the category of *n*-element sets with bijections to vector spaces.

FI-modules: Functors from *FI*, the category of finite sets with injections, to vector spaces.

As we vary *n*, the polynomial representations of $GL_n(\mathbb{C})$ fit together to form strict polynomial functors $vect_{\mathbb{C}} \rightarrow vect_{\mathbb{C}}$. What is the symmetric group analog?

A categorical reformulation: A representation of S_n is equivalent to a functor from the category of *n*-element sets with bijections to vector spaces.

FI-modules: Functors from *FI*, the category of finite sets with injections, to vector spaces.

Theorem (Church-Ellenberg-Farb)

If V is a finitely generated FI-module (over $\mathbb{C})$ then for $n\gg 0$

$$V([n]) \cong \bigoplus_{\lambda} c_{\lambda} S^{\lambda[n]}$$

where c_{λ} is independent of n, and nonzero for only finitely many λ .

Polynomial functors do give rise to finitely generated *FI*-modules, so the restriction problem exhibits this same stabilization behavior. However something much stronger happens.

Polynomial functors do give rise to finitely generated *FI*-modules, so the restriction problem exhibits this same stabilization behavior. However something much stronger happens.

FI is equivalent to the category of finite dimensional based vector spaces with 0-1 matrices with most one 1 in each row, and exactly one 1 in each column.

Polynomial functors do give rise to finitely generated *FI*-modules, so the restriction problem exhibits this same stabilization behavior. However something much stronger happens.

FI is equivalent to the category of finite dimensional based vector spaces with 0-1 matrices with most one 1 in each row, and exactly one 1 in each column.

FI is the category of finite dimensional based vector spaces with 0-1 matrices of all sizes with at most one 1 in each row and column. (Can also be defined in terms of partially defined injections)

Polynomial functors do give rise to finitely generated *FI*-modules, so the restriction problem exhibits this same stabilization behavior. However something much stronger happens.

FI is equivalent to the category of finite dimensional based vector spaces with 0-1 matrices with most one 1 in each row, and exactly one 1 in each column.

FI is the category of finite dimensional based vector spaces with 0-1 matrices of all sizes with at most one 1 in each row and column. (Can also be defined in terms of partially defined injections)

FI[#]-modules are then functors from FI[#] to vector spaces.

FI[‡]-modules are **much** more rigid than *FI*-modules in general.

Theorem (Church-Ellenberg-Farb)

For λ fixed and n varying, the irreducible rook monoid representations V_λ(n) form an irreducible FI[#]-module V_λ.

FI[‡]-modules are **much** more rigid than *FI*-modules in general.

Theorem (Church-Ellenberg-Farb)

- For λ fixed and n varying, the irreducible rook monoid representations V_λ(n) form an irreducible FI[#]-module V_λ.
- **2** Every irreducible FI[‡]-module is of this form.

FI[‡]-modules are **much** more rigid than *FI*-modules in general.

Theorem (Church-Ellenberg-Farb)

- For λ fixed and n varying, the irreducible rook monoid representations V_λ(n) form an irreducible FI[#]-module V_λ.
- 2 Every irreducible FI[‡]-module is of this form.
- A finitely generated FI[#]-module decomposes as a finite direct sum of irreducibles

FI[‡]-modules are **much** more rigid than *FI*-modules in general.

Theorem (Church-Ellenberg-Farb)

- For λ fixed and n varying, the irreducible rook monoid representations V_λ(n) form an irreducible FI[#]-module V_λ.
- 2 Every irreducible FI[‡]-module is of this form.
- A finitely generated FI[#]-module decomposes as a finite direct sum of irreducibles

Observation: Schur functors give rise to *FI*[#]-modules:

$$\mathsf{FI}
ature$$
 $\stackrel{\mathsf{free}}{\longrightarrow} \mathsf{vect}_{\mathbb{C}} \stackrel{\mathbb{S}^{\lambda}}{\longrightarrow} \mathsf{vect}_{\mathbb{C}}$

FI[‡]-modules are **much** more rigid than *FI*-modules in general.

Theorem (Church-Ellenberg-Farb)

- For λ fixed and n varying, the irreducible rook monoid representations V_λ(n) form an irreducible FI[#]-module V_λ.
- **2** Every irreducible FI[‡]-module is of this form.
- A finitely generated FI[#]-module decomposes as a finite direct sum of irreducibles

Observation: Schur functors give rise to *FI*[#]-modules:

$$\mathsf{FI}
ature$$
 $\stackrel{\mathsf{free}}{\longrightarrow} \mathsf{vect}_{\mathbb{C}} \stackrel{\mathbb{S}^{\lambda}}{\longrightarrow} \mathsf{vect}_{\mathbb{C}}$

Fact (Church-Ellenberg-Farb): This composition is finitely generated.

< A

• Irreducible algebraic representations of T_n are all one dimensional and are indexed by *n*-tuples of integers called *weights*. Polynomial weights are those indexed by *n*-tuples of non-negative integers.

- Irreducible algebraic representations of T_n are all one dimensional and are indexed by *n*-tuples of integers called *weights*. Polynomial weights are those indexed by *n*-tuples of non-negative integers.
- **②** We already know how W_{λ} decomposes as a T_n representation this is what a Schur polynomial is.

- Irreducible algebraic representations of T_n are all one dimensional and are indexed by *n*-tuples of integers called *weights*. Polynomial weights are those indexed by *n*-tuples of non-negative integers.
- **②** We already know how W_{λ} decomposes as a T_n representation this is what a Schur polynomial is.
- S_n sits inside $N(T_n)$, the normalizer of T_n inside $GL_n(\mathbb{C})$. The action of S_n on T_n by conjugation induces an action of S_n on the weights.

- Irreducible algebraic representations of T_n are all one dimensional and are indexed by *n*-tuples of integers called *weights*. Polynomial weights are those indexed by *n*-tuples of non-negative integers.
- **②** We already know how W_{λ} decomposes as a T_n representation this is what a Schur polynomial is.
- S_n sits inside $N(T_n)$, the normalizer of T_n inside $GL_n(\mathbb{C})$. The action of S_n on T_n by conjugation induces an action of S_n on the weights.
- If we look at all the sum of all the weight spaces of W_{λ} corresponding to a single orbit, this forms an S_n -subrepresentation.

An example, or why I am skeptical of symmetric functions

$$S_{3,1}(x_1, x_2, x_3, x_4) = 3m_{(1,1,1,1)} + 2m_{(2,1,1)} + m_{(2,2)} + m_{(3,1)}$$

 $3m_{(1,1,1,1)} = 3x_1x_2x_3x_4$ corresponds to the 3 dimensional (1, 1, 1, 1)-weight space being isomorphic to $S^{(3,1)}$ as a representation of S_4 .

 $2m_{(2,1,1)} = 2x_1^2x_2x_3 + 2x_1^2x_2x_4 + \cdots + 2x_4^2x_2x_3$ is the T_n character of a 24 dimensional space with an S_4 action isomorphic to

$$S^{1,1,1,1} \oplus 3S^{(2,1,1)} \oplus 3S^{(3,1)} \oplus 2S^{(2,2)} \oplus S^{(4)}$$

 $m_{(2,2)} = x_1^2 x_2^2 + \cdots + x_3^2 x_4^2$ is the T_n character of a 6 dimensional space with an S_4 action isomorphic to $S^{(2,1,1)} \oplus S^{(3,1)}$

 $m_{(3,1)} = x_1^3 x_2 + \cdots + x_4^3 x_3$ is the T_n character of a 12 dimensional space with an S_4 action isomorphic to $S^{(3,1)} \oplus S^{(2,2)} \oplus 2S^{(3,1)} \oplus S^{(4)}$

• M_n is the subgroup of $GL_n(\mathbb{C})$ generated by S_n and T_n .

- M_n is the subgroup of $GL_n(\mathbb{C})$ generated by S_n and T_n .
- $M_n = N(T_n)$, the full normalizer of T_n inside $GL_n(\mathbb{C})$.

- M_n is the subgroup of $GL_n(\mathbb{C})$ generated by S_n and T_n .
- $M_n = N(T_n)$, the full normalizer of T_n inside $GL_n(\mathbb{C})$.
- $M_n \cong T_n \rtimes S_n \cong \mathbb{C}^* \wr S_n$.

- M_n is the subgroup of $GL_n(\mathbb{C})$ generated by S_n and T_n .
- $M_n = N(T_n)$, the full normalizer of T_n inside $GL_n(\mathbb{C})$.
- $M_n \cong T_n \rtimes S_n \cong \mathbb{C}^* \wr S_n$.

As a consequence of this semidirect product structure, each irreducible M_n representation has a single S_n -orbit of weights for T_n that all occur with equal multiplicity.

What can we say about the representations of M_n ?

What can we say about the representations of M_n ?

• Irreducible polynomial representations are indexed by ordered lists of partitions $(\lambda_0, \lambda_1, \lambda_2, ...)$ such that $\sum_{i=0}^{\infty} |\lambda_i| = n$.

What can we say about the representations of M_n ?

- Irreducible polynomial representations are indexed by ordered lists of partitions $(\lambda_0, \lambda_1, \lambda_2, ...)$ such that $\sum_{i=0}^{\infty} |\lambda_i| = n$.
- The T_n -weights that occur are those with $|\lambda_0|$ zeroes, $|\lambda_1|$ ones, $|\lambda_2|$ twos, and so on.
- In particular the sum $\sum_{i=0}^{\infty} i |\lambda_i|$ is the degree of the representation.

What can we say about the representations of M_n ?

- Irreducible polynomial representations are indexed by ordered lists of partitions $(\lambda_0, \lambda_1, \lambda_2, ...)$ such that $\sum_{i=0}^{\infty} |\lambda_i| = n$.
- The T_n -weights that occur are those with $|\lambda_0|$ zeroes, $|\lambda_1|$ ones, $|\lambda_2|$ twos, and so on.
- In particular the sum $\sum_{i=0}^{\infty} i |\lambda_i|$ is the degree of the representation.
- As a representation of S_n , the irreducible representation indexed by $(\lambda_0, \lambda_1, \lambda_2, ...)$ is isomorphic to

$$\mathsf{Ind}_{\mathcal{S}_{|\lambda_0|} \times \mathcal{S}_{|\lambda_1|} \times ...}^{\mathcal{S}_n}(\mathcal{S}^{\lambda_0} \boxtimes \mathcal{S}^{\lambda_1} \boxtimes ...)$$

.

We say that an irreducible representation of M_n is strongly polynomial if λ_0 is a (possibly empty) horizontal strip. In this case we'll denote it as $V(\lambda_1, \lambda_2, \lambda_3, ...)_n$, omitting all trailing empty partitions.

We say that an irreducible representation of M_n is strongly polynomial if λ_0 is a (possibly empty) horizontal strip. In this case we'll denote it as $V(\lambda_1, \lambda_2, \lambda_3, ...)_n$, omitting all trailing empty partitions.

Theorem (H?)

 W_λ(n) restricted to M_n is decomposes as a direct sum of degree |λ| strictly polynomial irreducible representations.

We say that an irreducible representation of M_n is strongly polynomial if λ_0 is a (possibly empty) horizontal strip. In this case we'll denote it as $V(\lambda_1, \lambda_2, \lambda_3, ...)_n$, omitting all trailing empty partitions.

Theorem (H?)

- W_λ(n) restricted to M_n is decomposes as a direct sum of degree |λ| strictly polynomial irreducible representations.
- **2** $W_{\lambda}(n)$ contains $V(\lambda)_n$ as a summand provided $n \ge |\lambda|$.

We say that an irreducible representation of M_n is strongly polynomial if λ_0 is a (possibly empty) horizontal strip. In this case we'll denote it as $V(\lambda_1, \lambda_2, \lambda_3, ...)_n$, omitting all trailing empty partitions.

Theorem (H?)

- W_λ(n) restricted to M_n is decomposes as a direct sum of degree |λ| strictly polynomial irreducible representations.
- **2** $W_{\lambda}(n)$ contains $V(\lambda)_n$ as a summand provided $n \ge |\lambda|$.
- As n varies the M_n representations V(λ₁, λ₂, λ₃,...)_n form an irreducible FI_{mon}-module, where FI_{mon} is a monomial matrix analog of FI and FI[#].

We say that an irreducible representation of M_n is strongly polynomial if λ_0 is a (possibly empty) horizontal strip. In this case we'll denote it as $V(\lambda_1, \lambda_2, \lambda_3, ...)_n$, omitting all trailing empty partitions.

Theorem (H?)

- W_λ(n) restricted to M_n is decomposes as a direct sum of degree |λ| strictly polynomial irreducible representations.
- **2** $W_{\lambda}(n)$ contains $V(\lambda)_n$ as a summand provided $n \ge |\lambda|$.
- As n varies the M_n representations V(λ₁, λ₂, λ₃,...)_n form an irreducible FI_{mon}-module, where FI_{mon} is a monomial matrix analog of FI and FI[#].

Definition/Problem: Call these representations of M_n on an S_n orbit of weight spaces in W_λ Kostka modules. How do they decompose into irreducible M_n representations?

Nate Harman (UChicago)

$$S_{3,1} = 3m_{(1,1,1,1)} + 2m_{(2,1,1)} + m_{(2,2)} + m_{(3,1)}$$

 $3m_{(1,1,1,1)}$ is the T_n character the Kostka module K((3,1), (1,1,1,1)), which is isomorphic to $V((3,1))_n$ as a representation of M_n .

 $2m_{(2,1,1)}$ is the T_n character the Kostka module K((3,1),(2,1,1)), which is isomorphic to $V((1,1),(1))_n \oplus V((2),(1))_n$ as a representation of M_n .

 $m_{(2,2)}$ is the T_n character the Kostka module K((3,1), (2,2)), which is isomorphic to $V(\emptyset, (1,1))_n$ as a representation of M_n .

 $m_{(3,1)}$ is the T_n character the Kostka module K((3,1),(3,1)), which is isomorphic to $V((1), \emptyset, (1))_n$ as a representation of M_n .

Thanks!

Image: A math a math