
Intermediate Algebraic Structure in the Restriction
Problem

Nate Harman

University of Chicago

May 13, 2020

Nate Harman (UChicago) Restriction Problem May 13, 2020 1 / 18



Polynomial Representations of GLn(C)

Let φ : GLn(C)→ GLN(C) be a representation. The following are
equivalent:

1 The matrix entries φ(g)i ,j of the representation are given by
polynomials in the matrix entries gi ′,j ′ of GLn(C).

2 φ is a direct summand of a direct sum of tensor powers of the
defining representation Cn.

3 There exists a strict polynomial functor Φ : VectC → VectC with
φ = Φ(Cn).

4 φ extends to a holomorphic map φ̃ : Matn×n(C)→ MatN×N(C) of
multiplicative monoids.

Such representations are called polynomial representations.
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Polynomial Representations of GLn(C) cont.

Irreducible polynomial representations are called Weyl modules
Wλ = Wλ(n).

Indexed by partitions with at most n parts.

Functorial in n: Wλ(n) ∼= Sλ(Cn) where Sλ denotes a Schur functor.

Characters given by Schur polynomials. Explicitly:

tr(φλ(diag(x1, x2, . . . , xn)) = sλ(x1, x2, . . . , xn)

d := |λ| is called the degree. It is also the degree of the matrix
entries φλ(g)i ,j as polynomials in the matrix entries gi ,j .

The degree also controls the dimension growth as we vary n:

dim(Wλ(n)) =
fλ
d!

nd + O(nd−1)
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Symmetric Group Representations

Irreducible representations of Sn are called Specht modules Sλ.

Indexed by partitions λ of size n.

Directly connected to representations of GLk(C) via Schur-Weyl
duality. (This is NOT the relationship we are interested in today
though.)

If λ = (λ1, λ2, . . . , λ`) is a partition of size k � n, we let
λ[n] := (n − k , λ1, λ2, . . . , λ`) denote the padded partition.

As n varies the representations Sλ[n] are functorial in a certain sense
made precise by the theory of FI -modules.

For n sufficiently large the dimension of Sλ[n] is a polynomial in n.
Explicitly if d = |λ| then

dim(Sλ[n]) =
fλ
d!

nd + O(nd−1)
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The Restriction Problem

Sn sits naturally inside GLn(C) as the group of permutation matrices.

Goal: Understand the restriction of polynomial representations from
GLn(C) to Sn.

Res
GLn(C)
Sn

(Wλ) ∼=
⊕
µ

(Sµ)⊕mλ,µ

The Restriction Problem: Find a positive combinatorial interpretation
for the multiplicities mλ,µ.
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The Rook Monoid

Idea: Polynomial representations extend from the GLn(C) to Matn×n(C),
including linear maps not of full rank. Is there a symmetric group analog?

The rook monoid Rn is the monoid of n × n matrices with at most one 1
in each row and column and zeroes otherwise (with the multiplication
operation).

Alternatively we could define Rn as the monoid of partially defined
injective functions from {1, 2, . . . , n} to itself.

Easy observation: Polynomial GLn(C) representations can be
“restricted” to the Rn.
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Representations of the Rook Monoid

Theorem (Munn, Solomon.)

1 If λ is a partition of k ≤ n the Sn-representation
IndSn

Sk×Sn−k
(Sλ � S (n−k)) can be upgraded to an irreducible

representation Vλ(n) of Rn.

2 As λ runs over all partitions of size at most n these Vλ(n) form a
complete list of the irreducible representations of Rn.

3 Representations of Rn are completely reducible.

In particular note that restriction from Rn to Sn is just given by the Pieri
rule.
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The Rank Filtration

Let I<r (n) ⊂ Rn be the set of matrices in Rn of rank less than r . This
forms a two-sided ideal.

Any representation M of Rn has a canonical filtration given by:

M≥r := {m ∈ M | I<r (n) ·m = 0}

In terms of the classification off irreducible representations M≥r is the sum
of all the irreducible subspaces of M of the form Vλ with |λ| ≥ r .

In the context of the restriction problem, if λ is a partition of degree d and
` parts then:

Wλ(n)≥d ∼= Vλ(n) and Wλ(n)≥` = Wλ(n)
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Functoriality and Representation Stability

As we vary n, the polynomial representations of GLn(C) fit together to
form strict polynomial functors vectC → vectC. What is the symmetric
group analog?

A categorical reformulation: A representation of Sn is equivalent to a
functor from the category of n-element sets with bijections to vector
spaces.

FI-modules: Functors from FI , the category of finite sets with injections,
to vector spaces.

Theorem (Church-Ellenberg-Farb)

If V is a finitely generated FI -module (over C) then for n� 0

V ([n]) ∼=
⊕
λ

cλS
λ[n]

where cλ is independent of n, and nonzero for only finitely many λ.
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FI ]-modules

Polynomial functors do give rise to finitely generated FI -modules, so the
restriction problem exhibits this same stabilization behavior. However
something much stronger happens.

FI is equivalent to the category of finite dimensional based vector spaces
with 0-1 matrices with most one 1 in each row, and exactly one 1 in each
column.

FI ] is the category of finite dimensional based vector spaces with 0-1
matrices of all sizes with at most one 1 in each row and column. (Can also
be defined in terms of partially defined injections)

FI ]-modules are then functors from FI ] to vector spaces.
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FI ]-modules cont.

FI ]-modules are much more rigid than FI -modules in general.

Theorem (Church-Ellenberg-Farb)

1 For λ fixed and n varying, the irreducible rook monoid representations
Vλ(n) form an irreducible FI ]-module Vλ.

2 Every irreducible FI ]-module is of this form.

3 A finitely generated FI ]-module decomposes as a finite direct sum of
irreducibles

Observation: Schur functors give rise to FI ]-modules:

FI ]
free−−→ vectC

Sλ−→ vectC

Fact (Church-Ellenberg-Farb): This composition is finitely generated.
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A natural grading

Let Tn ⊂ GLn(C) denote the subgroup of diagonal matrices.

1 Irreducible algebraic representations of Tn are all one dimensional and
are indexed by n-tuples of integers called weights. Polynomial weights
are those indexed by n-tuples of non-negative integers.

2 We already know how Wλ decomposes as a Tn representation – this
is what a Schur polynomial is.

3 Sn sits inside N(Tn), the normalizer of Tn inside GLn(C). The action
of Sn on Tn by conjugation induces an action of Sn on the weights.

4 If we look at all the sum of all the weight spaces of Wλ corresponding
to a single orbit, this forms an Sn-subrepresentation.
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An example, or why I am skeptical of symmetric functions

S3,1(x1, x2, x3, x4) = 3m(1,1,1,1) + 2m(2,1,1) + m(2,2) + m(3,1)

3m(1,1,1,1) = 3x1x2x3x4 corresponds to the 3 dimensional (1, 1, 1, 1)-weight

space being isomorphic to S (3,1) as a representation of S4.

2m(2,1,1) = 2x21x2x3 + 2x21x2x4 + · · ·+ 2x24x2x3 is the Tn character of a 24
dimensional space with an S4 action isomorphic to

S1,1,1,1 ⊕ 3S (2,1,1) ⊕ 3S (3,1) ⊕ 2S (2,2) ⊕ S (4)

m(2,2) = x21x
2
2 + · · ·+ x23x

2
4 is the Tn character of a 6 dimensional space

with an S4 action isomorphic to S (2,1,1) ⊕ S (3,1)

m(3,1) = x31x2 + · · ·+ x34x3 is the Tn character of a 12 dimensional space

with an S4 action isomorphic to S (3,1) ⊕ S (2,2) ⊕ 2S (3,1) ⊕ S (4)
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Monomial Matrices

If we want to study the action of Sn while still remembering the action of
Tn, it is natural to consider the group Mn of monomial matrices – that is,
matrices with a single non-zero entry in each row and column.

Mn is the subgroup of GLn(C) generated by Sn and Tn.

Mn = N(Tn), the full normalizer of Tn inside GLn(C).

Mn
∼= Tn o Sn ∼= C∗ o Sn.

As a consequence of this semidirect product structure, each irreducible Mn

representation has a single Sn-orbit of weights for Tn that all occur with
equal multiplicity.
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Representations of Monomial Matrices

What can we say about the representations of Mn?

Irreducible polynomial representations are indexed by ordered lists of
partitions (λ0, λ1, λ2, . . . ) such that

∑∞
i=0 |λi | = n.

The Tn-weights that occur are those with |λ0| zeroes, |λ1| ones, |λ2|
twos, and so on.

In particular the sum
∑∞

i=0 i |λi | is the degree of the representation.

As a representation of Sn, the irreducible representation indexed by
(λ0, λ1, λ2, . . . ) is isomorphic to

IndSn
S|λ0|×S|λ1|×...

(Sλ0 � Sλ1 � . . . )

.
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Restriction to Monomial Matrices

We say that an irreducible representation of Mn is strongly polynomial if
λ0 is a (possibly empty) horizontal strip. In this case we’ll denote it as
V (λ1, λ2, λ3, . . . )n, omitting all trailing empty partitions.

Theorem (H?)

1 Wλ(n) restricted to Mn is decomposes as a direct sum of degree |λ|
strictly polynomial irreducible representations.

2 Wλ(n) contains V (λ)n as a summand provided n ≥ |λ|.

3 As n varies the Mn representations V (λ1, λ2, λ3, . . . )n form an
irreducible FImon-module, where FImon is a monomial matrix analog of
FI and FI ].

Definition/Problem: Call these representations of Mn on an Sn orbit of
weight spaces in Wλ Kostka modules. How do they decompose into
irreducible Mn representations?
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An example revisited

S3,1 = 3m(1,1,1,1) + 2m(2,1,1) + m(2,2) + m(3,1)

3m(1,1,1,1) is the Tn character the Kostka module K ((3, 1), (1, 1, 1, 1)),
which is isomorphic to V ((3, 1))n as a representation of Mn.

2m(2,1,1) is the Tn character the Kostka module K ((3, 1), (2, 1, 1)), which
is isomorphic to V ((1, 1), (1))n ⊕ V ((2), (1))n as a representation of Mn.

m(2,2) is the Tn character the Kostka module K ((3, 1), (2, 2)), which is
isomorphic to V (∅, (1, 1))n as a representation of Mn.

m(3,1) is the Tn character the Kostka module K ((3, 1), (3, 1)), which is
isomorphic to V ((1), ∅, (1))n as a representation of Mn.
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Thanks!
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