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Totally positive/nonnegative matrices

Definition. A rectangular matrix is totally positive (TP) if all minors are
positive. (Similarly, totally non-negative (TN).)

Thus all entries > 0, all 2× 2 minors > 0, . . .

These matrices occur widely in mathematics:
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Totally positive matrices in mathematics

TP and TN matrices occur in

analysis and differential equations (Aissen, Edrei, Schoenberg, Pólya,
Loewner, Whitney)

probability and statistics (Efron, Karlin, Pitman, Proschan, Rinott)

interpolation theory and splines (Curry, Schoenberg)

Gabor analysis (Gröchenig, Stöckler)

interacting particle systems (Gantmacher, Krein)

matrix theory (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal)

representation theory (Lusztig, Postnikov)

cluster algebras (Berenstein, Fomin, Zelevinsky)

integrable systems (Kodama, Williams)

quadratic algebras (Borger, Davydov, Grinberg, Hô Hai)

combinatorics (Brenti, Lindström–Gessel–Viennot, Skandera, Sturmfels)
...
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Examples of TP/TN matrices

1 The lower-triangular matrix A = (1j≥k)nj,k=1 is TN.

2 Generalized Vandermonde matrices are TP: if 0 < x1 < · · · < xn and
y1 < y2 < · · · < yn are real, then

det(x
yk
j )nj,k=1 > 0.

3 (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn,

the matrix G[x;y] := (e−σ(xj−yk)
2

)nj,k=1 is TP.

Proof: It suffices to show detG[x;y] > 0. Now factorize:

G[x;y] = diag(e−σx
2
j )nj=1 · ((e2σxj )yk )nj,k=1 · diag(e−σy

2
k )nk=1.

The middle matrix is a generalized Vandermonde matrix, so all three
factors have positive determinants.

Apoorva Khare, IISc and APRG, Bangalore 4 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

Definitions and examples
Finite and infinite one-sided PF sequences

Examples of TP/TN matrices

1 The lower-triangular matrix A = (1j≥k)nj,k=1 is TN.

2 Generalized Vandermonde matrices are TP: if 0 < x1 < · · · < xn and
y1 < y2 < · · · < yn are real, then

det(x
yk
j )nj,k=1 > 0.

3 (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn,

the matrix G[x;y] := (e−σ(xj−yk)
2

)nj,k=1 is TP.

Proof: It suffices to show detG[x;y] > 0. Now factorize:

G[x;y] = diag(e−σx
2
j )nj=1 · ((e2σxj )yk )nj,k=1 · diag(e−σy

2
k )nk=1.

The middle matrix is a generalized Vandermonde matrix, so all three
factors have positive determinants.

Apoorva Khare, IISc and APRG, Bangalore 4 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

Definitions and examples
Finite and infinite one-sided PF sequences

Examples of TP/TN matrices

1 The lower-triangular matrix A = (1j≥k)nj,k=1 is TN.

2 Generalized Vandermonde matrices are TP: if 0 < x1 < · · · < xn and
y1 < y2 < · · · < yn are real, then

det(x
yk
j )nj,k=1 > 0.

3 (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn,

the matrix G[x;y] := (e−σ(xj−yk)
2

)nj,k=1 is TP.

Proof: It suffices to show detG[x;y] > 0. Now factorize:

G[x;y] = diag(e−σx
2
j )nj=1 · ((e2σxj )yk )nj,k=1 · diag(e−σy

2
k )nk=1.

The middle matrix is a generalized Vandermonde matrix, so all three
factors have positive determinants.

Apoorva Khare, IISc and APRG, Bangalore 4 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

Definitions and examples
Finite and infinite one-sided PF sequences

Pólya frequency sequences
The above notions of ‘finite’ matrices can be generalized to (bi-)infinite ones.
A real sequence (an)n∈Z is a Pólya frequency sequence if for any integers

l1 < l2 < · · · < ln, m1 < m2 < · · · < mn,

the determinant det(alj−mk )nj,k=1 ≥ 0.

In other words, these are bi-infinite Toeplitz matrices

. . .
...

...
...

...
· · · a0 a−1 a−2 a−3 · · ·
· · · a1 a0 a−1 a−2 · · ·
· · · a2 a1 a0 a−1 · · ·
· · · a3 a2 a1 a0 · · ·

...
...

...
...

. . .


which are totally non-negative.

Example: Gaussians. For q ∈ (0, 1), the sequence (qn
2

)n∈Z is not just a
TN sequence, but TP. (Why? Set q = e−σ.)

Focus on two kinds of examples: finite and one-sided infinite.
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Generating functions of Pólya frequency sequences

Two remarkable results (1950s) say that finite and one-sided Pólya
frequency sequences are simply products of ‘atoms’ !

The ‘atoms’ are explained next. For now: why products?

Suppose a = (. . . , 0, 0, a0, a1, a2, a3, . . . ) is one-sided. Its generating function is

Ψa(x) := a0 + a1x+ a2x
2 + a3x

3 + · · · , a0 6= 0.

Now if a,b are one-sided PF sequences, then their Toeplitz ‘matrices’ are TN:

Ta :=


a0 0 0 · · ·
a1 a0 0 · · ·
a2 a1 a0 · · ·
...

...
...

. . .

 Tb :=


b0 0 0 · · ·
b1 b0 0 · · ·
b2 b1 b0 · · ·
...

...
...

. . .

 .

By the Cauchy–Binet formula, so also is TaTb  Toeplitz matrix.

This product matrix corresponds to the coefficients of the power series
Ψa(x)Ψb(x). This gives new examples of PF sequences from old ones.
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Finite Pólya frequency sequences – and real-rootedness
‘Atomic’ finite PF sequences:

The sequence (. . . , 0, 0, a0, 0, 0, . . . ) and (. . . , 0, 0, 1, α, 0, 0, . . . ) are PF
sequences if a0, α > 0.
Indeed, every ‘square submatrix’ drawn from these sequences either has a
zero row/column, or is triangular with positive diagonal entries.

The ‘atom’ (. . . , 0, 0, 1, α, 0, 0, . . . ) corresponds to Ψa(x) = 1 + αx.

By previous slide, a0(1 + α1x)(1 + α2x) · · · (1 + αmx) generates a PF
sequence am, when all αj > 0. In fact, these are all finite PF sequences:

Theorem (Aissen–Schoenberg–Whitney and Edrei, 1950s)

Suppose a0, . . . , am > 0. The following are equivalent.

1 a = (. . . , 0, 0, a0, . . . , am, 0, 0, . . . ) is a PF sequence.

2 The generating function Ψa(x) has m negative real roots (i.e., the above
form).

3 The generating function Ψa(x) has m real roots.
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Connection to combinatorics

‘Finite-order’ PF sequences: A real sequence (an)n∈Z is PFr for r ≥ 1 if for any
size 1 ≤ n ≤ r and integers

l1 < l2 < · · · < ln, m1 < m2 < · · · < mn,

the determinant det(alj−mk )nj,k=1 ≥ 0.

PF and related sequences are well-known to combinatorialists:

A PF1 sequence (a0, . . . , am) is simply a non-negative sequence.
(Brenti: the only ones in combinatorics that are “meaningful” .)

A positive tuple (a0, . . . , am) is a PF2 sequence if and only if it is
log-concave: a2j ≥ aj−1aj+1 for 0 < j < m.
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Connection to combinatorics (cont.)

Proposition

Fix a positive tuple (padded by zeros) a = (. . . , 0, 0, a0, . . . , am, 0, 0, . . . ).
Then each of the following parts implies the next.

1 a is a PF sequence – i.e.,, the polynomial Ψa(x) is real-rooted.

2 (a0, . . . , am) is strongly log-concave: (aj/
(
m
j

)
)mj=0 is log-concave.

3 The tuple (a0, . . . , am) is log-concave.

4 The tuple (a0, . . . , am) is unimodal.

Well-studied in combinatorics. E.g. Stirling numbers of second kind:

En(x) =

n∑
k=1

k!S(n, k)xk,

n∑
k=1

S(n, k)xk

are real-rooted polynomials. For more on these connections to combinatorics:
R.P. Stanley, Graph theory and its applications, 1989.
F. Brenti, Mem. Amer. Math. Soc., 1989.
P. Brändén, Handbook of Enumerative Combinatorics, 2014.
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Infinite one-sided Pólya frequency sequences
For ‘infinite’ one-sided PF sequences, only one other ‘atom’ – and limits:

Recall, the lower-triangular matrix A = (1j≥k)nj,k=1 is TN (direct proof).
Hence a1 := (. . . , 0, 0, 1, 1, . . . ) is a one-sided PF sequence, with generating
function:

Ψa1(x) = 1 + x+ x2 + · · · = 1

1− x .

Claim: The function ac := (. . . , 0, 0, 1, c, c2, . . . ) is a PF sequence for c > 0.
Proof: Given increasing tuples of integers (lj), (mk) for 1 ≤ j, k ≤ n,

((ac)lj−mk ) = diag(clj )nj=1 · (1lj≥mk
)nj,k=1 · diag(c−mk )nk=1,

and this has a non-negative determinant since a1 is PF.

Therefore (1− βx)−1 is a PF sequence for β > 0.

Limits: If am are PF sequences, converging ‘pointwise’ to a,

then a is a PF sequence.

Example: Since (1 + δx/m)m generates a PF sequence for δ ≥ 0 and all
m ≥ 1, so does eδx. (E.g., (. . . , 0, 0, 1, 1

1!
, 1
2!
, . . . ) is a PF sequence.)
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Infinite one-sided Pólya frequency sequences (cont.)

More examples: if αj , βj ≥ 0 for all j ≥ 0 are summable, then

∞∏
j=1

(1 + αjx),
∞∏
j=1

(1− βjx)−1

both generate PF sequences.

Hence so does their product:

eδx
∏∞
j=1(1 + αjx)∏∞
j=1(1− βjx)

.

Remarkably, these are all of the PF sequences!

Theorem (Aissen–Schoenberg–Whitney and Edrei, 1950s)

A one-sided sequence a = (. . . , 0, 0, a0 = 1, a1, . . . ) is a PF sequence if and
only if it is of the above form.

(Uses Hadamard’s thesis (1892) and Nevanlinna’s refinement (1929) of Picard’s
theorem.)
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Pólya frequency sequences and algebraic combinatorics

Definitions and examples
Finite and infinite one-sided PF sequences

From Pólya–Schur multipliers to Ramanujan graphs

What if Ψa(x) is an entire function? It must be eδx
∏
j≥1(1 + αjx).

Theorem (Pólya–Schur, Crelle, 1914)

An entire function Ψ(x) =
∑
n≥0 anx

n with Ψ(0) = 1 generates a one-sided
PF sequence, if and only if the sequence n!an is a multiplier sequence of the
first kind.

In other words, if
∑
j≥0 cjx

j is a real-rooted polynomial , so is
∑
j≥0 j!ajcjx

j .

This circle of ideas – and classification of Pólya–Schur type multiplier
sequences – has found far-reaching generalizations in work of Borcea and
Brändén (late 2000s).

Taken forward by Marcus–Spielman–Srivastava (2010s):

Kadison–Singer conjecture.
Existence of bipartite Ramanujan (expander) graphs of every degree
and every order.
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Pólya frequency sequences and algebraic combinatorics

Definitions and examples
Finite and infinite one-sided PF sequences

The Riemann Hypothesis

Pólya frequency sequences also connect to number theory:

Theorem (Katkova, Comput. Meth. Funct. Th., 2000)

Let ξ(s) =
(
s
2

)
π−s/2Γ(s/2)ζ(s) be the Riemann xi-function. If

ξ1(s) := ξ(1/2 +
√
s)

generates a PF sequence, then the Riemann Hypothesis is true.

Katkova proved that ξ1 is PF of order at least 43, and is ‘asymptotically PF’ of
all orders.
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Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Hilbert series and PF sequences
PF sequences also show up in algebra. Given a Z≥0-graded vector space
V = ⊕n≥0V [n] over a field F, its Hilbert series is

H(V, x) =
∑
n≥0

xn dimV [n].

If V ∼= Fm for m ≥ 1, then H(∧•V, x) = (1 + x)m, H(S•V, x) =
1

(1− x)m
,

and from above, these Koszul-dual algebras both generate PF sequences.

More generally, say R : V ⊗ V → V ⊗ V satisfies

the Yang–Baxter equation R12R23R12 = R23R12R23, and

the Iwahori–Hecke relation (R+ 1)(R− q) = 0, q ∈ F×.
Define two graded algebas – the R-exterior algebra and R-symmetric algebra:

∧•R(V ) := T •(V )/(im(R+ Id)), S•q,R(V ) := T •(V )/(im(R− q Id)).

Theorem (Hô Hai 1999, Davydov 2000)

Suppose F has characteristic zero, dimV <∞, and either q = 1 or q is not a
root of unity. Then the Hilbert series H(∧•R(V ), x), H(S•q,R(V ), x) both
generate PF sequences. (Skryabin, 2019)
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(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Elementary symmetric polynomials
Return to the case q = 1 and R = τ = flip, but now with V having a countable
R≥0-graded basis vj of degree αj > 0. Then the Hilbert series of ∧•(V ) is:

H(∧•(V ), x) =
∏
j≥1(1 + αjx),

and this generates a PF sequence if αj ≥ 0 are summable.

The constant, linear, quadratic, . . . terms of this power series are

1,
∑
j

αj ,
∑
j<k

αjαk,
∑
j<k<l

αjαkαl, . . .

which are precisely the elementary symmetric polynomials in the roots αj .
Thus, the corresponding infinite Toeplitz TN matrix is

1 0 0 0 · · ·
e1(u) 1 0 0 · · ·
e2(u) e1(u) 1 0 · · ·
e3(u) e2(u) e1(u) 1 · · ·

...
...

...
...

. . .


where we specialize the variable uj to equal αj ≥ 0.
Every minor is numerically positive. In fact, even more is true!
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Complete homogeneous symmetric polynomials
Similarly, the Hilbert series of S•(V ) is:

H(S•(V ), x) =
∏
j≥1(1− αjx)−1,

and this generates a PF sequence if αj ≥ 0 are summable.

The constant, linear, quadratic, . . . terms of this power series are

1,
∑
j

αj ,
∑
j≤k

αjαk,
∑
j≤k≤l

αjαkαl, . . .

which are precisely the complete homogeneous symmetric polynomials in
the roots αj .
Thus, the corresponding infinite Toeplitz TN matrix is

1 0 0 0 · · ·
h1(u) 1 0 0 · · ·
h2(u) h1(u) 1 0 · · ·
h3(u) h2(u) h1(u) 1 · · ·

...
...

...
...

. . .


where we specialize the variable uj to equal αj ≥ 0.
Every minor is numerically positive. In fact, even more is true!

Apoorva Khare, IISc and APRG, Bangalore 16 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Complete homogeneous symmetric polynomials
Similarly, the Hilbert series of S•(V ) is:

H(S•(V ), x) =
∏
j≥1(1− αjx)−1,

and this generates a PF sequence if αj ≥ 0 are summable.

The constant, linear, quadratic, . . . terms of this power series are

1,
∑
j

αj ,
∑
j≤k

αjαk,
∑
j≤k≤l

αjαkαl, . . .

which are precisely the complete homogeneous symmetric polynomials in
the roots αj .
Thus, the corresponding infinite Toeplitz TN matrix is

1 0 0 0 · · ·
h1(u) 1 0 0 · · ·
h2(u) h1(u) 1 0 · · ·
h3(u) h2(u) h1(u) 1 · · ·

...
...

...
...

. . .


where we specialize the variable uj to equal αj ≥ 0.

Every minor is numerically positive. In fact, even more is true!

Apoorva Khare, IISc and APRG, Bangalore 16 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Complete homogeneous symmetric polynomials
Similarly, the Hilbert series of S•(V ) is:

H(S•(V ), x) =
∏
j≥1(1− αjx)−1,

and this generates a PF sequence if αj ≥ 0 are summable.

The constant, linear, quadratic, . . . terms of this power series are

1,
∑
j

αj ,
∑
j≤k

αjαk,
∑
j≤k≤l

αjαkαl, . . .

which are precisely the complete homogeneous symmetric polynomials in
the roots αj .
Thus, the corresponding infinite Toeplitz TN matrix is

1 0 0 0 · · ·
h1(u) 1 0 0 · · ·
h2(u) h1(u) 1 0 · · ·
h3(u) h2(u) h1(u) 1 · · ·

...
...

...
...

. . .


where we specialize the variable uj to equal αj ≥ 0.
Every minor is numerically positive. In fact, even more is true!

Apoorva Khare, IISc and APRG, Bangalore 16 / 26



Totally positive matrices and Pólya frequency sequences
Pólya frequency sequences and algebraic combinatorics

(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Monomial-positivity and the (dual) Jacobi–Trudi identity

Theorem

All minors of the matrices (ej−k(u)1j≥k)j,k≥0 and (hj−k(u)1j≥k)j,k≥0 are
monomial-positive.

(Hence they take non-negative values upon specializing to uj = αj ≥ 0.)

In fact, an even stronger fact holds: all minors are (skew) Schur-positive
 non-negative Z-linear combinations of (skew) Schur polynomials.

In a sense, these are the first two instances of numerical positivity
‘upgrading’ to monomial-positivity,
‘upgrading’ to Schur-positivity.

They are called the (dual) Jacobi–Trudi identities (1800s).

This brings us to Schur polynomials.
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(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Schur polynomials

Given a decreasing N -tuple nN−1 > nN−2 > · · · > n0 > 0, the corresponding
Schur polynomial over a field F is the unique polynomial extension to FN of

s(nN−1,...,n0)(u1, . . . , uN ) :=
det(u

nk−1

j )

det(uk−1
j )

for pairwise distinct uj ∈ F.

Example: If N = 2 and n = (m < n), then

sn(u1, u2) =
un1u

m
2 − um1 un2
u1 − u2

= (u1u2)m(un−m−1
1 +un−m−2

1 u2+· · ·+un−m−1
2 ).

Basis of homogeneous symmetric polynomials in u1, . . . , uN .

Characters of irreducible polynomial representations of GLN (C).
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(Dual) Jacobi–Trudi identities
Schur polynomials and (weak) majorization

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and m := (0, 2, 4). The tableaux are:

3 3

2

3 3

1

3 2

2

3 2

1

3 1

2

3 1

1

2 2

1

2 1

1

s(0,2,4)(u1, u2, u3)

= u2
3u2 + u2

3u1 + u3u
2
2 + 2u3u2u1 + u3u
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= (u1 + u2)(u2 + u3)(u3 + u1).

Example 2: Suppose N = 3 and n = (0, 2, 3): 3

2

3
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1

Then s(0,2,3)(u1, u2, u3) = u1u2 + u2u3 + u3u1.
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Schur Monotonicity Lemma

Example: Continuing from the previous slide,

f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) – hence non-decreasing in each coordinate.

In fact, their ratio f(u) also has the same property!

Theorem (K.–Tao, Amer. J. Math., in press)

For integer tuples 0 ≤ n0 < · · · < nN−1 and 0 ≤ m0 < · · · < mN−1 such that
nj ≤ mj ∀j, the function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate. (In fact we show Schur-positivity.)

(Recent example of numerical positivity  monomial-pos.  Schur-positivity.)
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Schur Monotonicity Lemma (cont.)

Claim: The ratio f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
,

treated as a function on the orthant (0,∞)3, is coordinatewise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is monomial-positive.

Now if we write this as
∑
j>0 pj(u1, u2)uj3, then each pj is Schur-positive,

i.e. a sum of Schur polynomials:

p0(u1, u2) = 0,

p1(u1, u2) = 2u1u
2
2 + 2u2

1u2 = 2
2 2

1
+ 2

2 1

1
= 2s(3,1)(u1, u2),

p2(u1, u2) = (u1 + u2)2 =
2 2

+
2 1

+
1 1

+
2

1

= s(3,0)(u1, u2) + s(2,1)(u1, u2).
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Proof-sketch of Schur Monotonicity Lemma

The proof for general m ≥ n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

sn · ∂uN (sm)− sm · ∂uN (sn)

is numerically positive on (0,∞)N . (Note, the coefficients in sn(u) of each ujN
are skew-Schur polynomials in u1, . . . , uN−1.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each ujN
is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam–Postnikov–Pylyavskyy (2007).
In turn, this emerged out of Skandera’s results (2004) on determinant
inequalities for totally non-negative matrices.
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Weak majorization through Schur polynomials

Our Schur Monotonicity Lemma implies in particular:

sm(u)

sn(u)
≥ sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ [1,∞)N .

if m dominates n coordinatewise.

Natural to ask: for which other tuples m,n does this inequality hold?

Theorem (K.–Tao, Amer. J. Math., in press)

Given integers 0 ≤ n0 < · · · < nN−1 and 0 ≤ m0 < · · · < mN−1, the above
inequality holds for all u ∈ [1,∞)N , if and only if m weakly majorizes n.

(Recall: this means mN−1 + · · ·+mj ≥ nN−1 + · · ·+ nj for all j.)

This problem was studied originally by Skandera and others in 2011,
on the entire positive orthant (0,∞)N :
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Cuttler–Greene–Skandera conjecture

Theorem (Cuttler–Greene–Skandera, Eur. J. Comb., 2011)

Given integers 0 ≤ n0 < · · · < nN−1 and 0 ≤ m0 < · · · < mN−1 such that

sm(u)

sn(u)
≥ sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ (0,∞)N ,

we have that m majorizes n.

Majorization = (weak majorization ) +
(∑

jmj =
∑
j nj

)
.

Conjecture (C–G–S, 2011): The converse also holds.

Theorem (Sra, Eur. J. Comb., 2016)

The Cuttler–Greene–Skandera conjecture is true.

These results provide novel characterizations of (weak) majorization, through
Schur polynomials and through proof-techniques originating in total positivity.
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Open question: Optimizing over [−1, 1]N?

Our work with Tao (2017) concerned entrywise operations preserving
positive semidefiniteness in a fixed dimension.

The maximization of sm(u)/sn(u) over (0, 1]N reveals tight bounds on
certain classes of polynomial preservers, acting on correlation matrices
with non-negative entries. (By homogeneity and continuity, maximize
only over the cube-boundary (0, 1]N ∩ ∂(0, 1]N .)

What about on all correlation matrices? Need to bound sm(u)/sn(u)
over all of [−1, 1]N \ {0}.

For this, need to ensure sn(u) does not vanish except at 0. Facts:
(1) The only such n = (0, 1, . . . , N − 2, N − 1 + 2r) for r ∈ Z≥0.
(2) All such sn(u) are complete symmetric homogeneous polynomials
h2r(u), and they are positive on RN \ {0}.

Question: Say mj ≥ j for j = 0, 1, . . . , N − 2, and mN−1 ≥ N − 1 + 2r.

Maximize
sm(u)

h2r(u)
on [−1, 1]N \ {0} – or just on its cube-boundary.
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