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The Ring Λ(k)

Definition

A k-bounded partition is a partition λ = (λ1 ≥ ... ≥ λd) where λ1 ≤ k.
We denote the set of all k-bounded partitions by Pk .

Definition

Write Λ(k) to denote the k-bounded symmetric function ring

Λ(k) := Q[h1, · · · , hk ] = Q[e1, · · · , ek ].

Remark

The ring Λ(k) := Q[h1, · · · , hk ] = Q[e1, · · · , ek ] is a subring of the
symmetric function ring Λ := Q[h1, h2, h3, · · · ] = Q[e1, e2, e3, · · · ], and
both {hλ | λ ∈ Pk} and {eλ | λ ∈ Pk} are bases of Λ(k).
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The Ring R`,k

We are interested in the subalgebras of H∗(Gr(`,C`+k);Q). The following
theorem gives a concrete presentation of this ring.

Theorem

The cohomology ring of the complex Grassmannian Gr(`,C`+k) with
coefficients in Q can be interpreted as the graded vector space:

R`,k ∼= Q[e1, e2, . . . , e`, h1, h2, . . . , hk ] /
( d∑

i=0

(−1)ieihd−i

)
d=1,2,...,k+`

∼= Q[h1, h2, . . . , hk ]/(e`+1, · · · , e`+k) = Λ(k)/(e`+1, · · · , e`+k)

where deg(ei ) = deg(hi ) = i , and the ei ’s in the second expression are the

ith Jacobi-Trudi determinants det


h1 h2 ···
1 h1 ···
...

. . .
. . .

0 ··· 1 h1 h2
0 ··· 0 1 h1

.
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Hilbert Series and q-Binomial Coefficients

Definition

Given any graded vector space R =
⊕∞

d=0 Rd over Q, the Hilbert series
of R is Hilb(R, q) =

∑∞
d=0 dimQ(Rd)qd .

Definition

The q-analogue of a positive integer is [n]q := 1 + q + . . .+ qn−1. Write
[n]!q := [n]q[n − 1]q . . . [1]q. The q-binomial coefficients are defined as[
n
k

]
q

:=
[n]!q

[k]!q[n − k]!q
. Equivalently

[
k + `
k

]
q

=
∑

λ⊂(k`) q
|λ|.

Theorem

By decomposing Gr(`,C`+k) into Schubert cells indexed by partitions

λ ⊆ (k`), G(`,Ck+`) =
⊔
λ Xλ, we can show Hilb(R`,k , q) =

[
`+ k
`

]
q

.
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The R-T Conjecture

Write R`,k,m to denote the subalgebra of R`,k generated by h1, . . . , hm.
See that Q = R`,k,0 ⊂ R`,k,1 ⊂ R`,k,2 ⊂ · · · ⊂ R`,k,m ⊂ · · · ⊂ R`,k .

Conjecture (Reiner & Tudose, 2003 [5])

For each m = 0, 1, 2, . . . ,min(k , `),

Hilb(R`,k,m, q) = 1 +
m∑
i=1

qi
[
k
i

]
q

`−i∑
j=0

qj(k−i+1)

[
i + j − 1

j

]
q

. (2.1)

Equivalently, for each m = 1, 2, . . . ,min(k , `),

Hilb(Rk,`,m, q)− Hilb(Rk,`,m−1, q)
(

= Hilb(Rk,`,m/Rk,`,m−1, q)
)

= qm
[
k
m

]
q

k−m∑
j=0

qj(`−m+1)

[
m + j − 1

j

]
q

.
(2.2)
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Visualization of the R-T Conjecture

Figure: A bar graph visualization of coefficients of the Hilbert series of the various
subalgebras of R6,6, as predicted by the R-T conjecture.
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The R-T Conjecture: Boundary Cases

Remarks

One can check that for m = 1, this conjecture reduces to
Hilb(R`,k,1, q) = 1 + q + . . .+ qk`, which can be deduced from either
Schubert calculus or the hard Lefschetz theorem.

For m = min(k , `), this conjecture must be consistent with

Hilb(R`,k , q) =

[
`+ k
`

]
q

. We can verify that the RHS of the R-T

Conjecture reduces to this q-binomial coefficient via a combinatorial
interpretation of the R-T conjecture involving the notion of i-vacant
partitions.
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i -vacant Partitions

Definition

A k-bounded partition λ ∈ Pk is i-vacant if i is the largest integer for
which the complementary skew diagram (k`(λ))/λ contains an i × (i − 1)
rectangle in its southeast corner.
We will call (k`(λ)) the ambient k-rectangle of λ.

Figure: The 5-bounded partition λ = (4, 4, 3, 3, 1) ∈ P5 has (55) as its ambient
5-rectangle and is 3-vacant because its complementary skew diagram (55)/λ
contains a 3× 2 rectangle in its southeast corner but not a 4× 3 rectangle.
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Interpreting the R-T Conjecture via i -vacant Partitions

Hilb(R`,k,m, q) = 1 +
m∑
i=1

qi
[
k
i

]
q

`−i∑
j=0

qj(k−i+1)

[
i + j − 1

j

]
q

`
`(λ)

k

i

i − 11

qj(k−i+1)

[
i + j − 1

j

]
q

qi
[
k
i

]
q
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A Combinatorial Interpretation of the R-T Conjecture

This interpretation was implicit in the Reiner & Tudose 2003 paper.

Theorem

For each m = 0, 1, 2, . . . ,min(k , `),

∑
i−vacant, i≤m

λ⊆(k`)

q|λ| = 1 +
m∑
i=1

qi
[
k
i

]
q

`−i∑
j=0

qj(k−i+1)

[
i + j − 1

j

]
q

.

Equivalently, for each m = 1, 2, . . . ,min(k , `),

∑
m−vacant
λ⊆(k`)

q|λ| = qm
[
k
m

]
q

`−m∑
j=0

qj(k−m+1)

[
m + j − 1

j

]
q

.

When m = min(k , `),
∑

i−vacant, i≤m
λ⊆(k`)

q|λ| =
∑

λ⊂(k`) q
|λ| =

[
`+ k
`

]
q

.
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k-Bounded Partitions and (k + 1)-Cores

Definition

A k-bounded partition is a partition λ = (λ1 ≥ ... ≥ λd) where λ1 ≤ k.
We denote the set of all k-bounded partition by Pk .

Definition

The hook length of a box b in the Ferrer’s diagram of a partition λ is the
number of boxes weakly to the right and weakly below b.

Definition

A (k + 1)-core is a partition λ = (λ1 ≥ ... ≥ λd) where no box has
hook-length equal to k + 1. We denote the set of all (k + 1)-core by Ck+1.

The partition λ = (4, 3, 1, 1) is 4-bounded, and it is also a 6-core.

7 4 3 1
5 2 1
2
1
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k-Bounded Partitions and (k + 1)-Cores

Lemma

There exists a bijection between Pk and Ck+1 described as follows:

c : Pk → Ck+1 slides rows of the Ferrer’s diagram of λ rightward so
that all boxes with hook-length greater than k have hook-length less
than k; boxes introduced will have hook length greater than k + 1.

p : Ck+1 → Pk removes from λ all boxes with hook-length greater
than k + 1 and slides rows leftward to obtain a k-bounded partition.

Considering again the 4-bounded partition λ = (4, 3, 1, 1) and we apply
the map c to obtain a 5-core c(λ). Considering the 3-bounded partition
µ = (2, 2, 1) and we apply the map c to obtain a 4-core c(µ).

7 4 3 1
5 2 1
2
1

→
11 8 7 6 4 3 2 1
6 3 2 1
2
1

4 2
3 1
1

→
5 3 1
3 1
1
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k-Conjugation

Theorem (Lapointe, Lascoux and Morse, 2003 [3])

The map ω(k) : Pk → Pk defined by sending a k-bounded partition λ to
λω(k) := p(c(λ)′) is an involution, where (−)′ denotes usual conjugation.

We shall call λω(k) the k-conjugate of λ.

c

4-conjugate conjugate

p
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Example: ` = 3, k = 3

Suggests: A k-bounded partition λ is i-vacant ⇐⇒ µ := λ(k) has µ1 = i .
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The Sets P`,k and P`,k ,m

Theorem

A k-bounded partition λ is i-vacant if and only if µ := λ(k) has µ1 = i .

From now on, we shall denote:

P`,k =: {λ | λω(k) ⊂ (k`)}
P`,k,m =: {λ | λ1 ≤ m, λω(k) ⊂ (k`)}.

Theorem

A k-bounded partition λ is i-vacant for some i ≤ m if and only if

λ(k) ∈ P`,k,m.

A k-bounded partition λ is m-vacant if and only if

λ(k) ∈ P`,k,m \ P`,k,m−1.
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New Combinatorial Interpretation of the RT Conjecture

Theorem

For each m = 0, 1, 2, ...,min(k , `),

∑
λ∈P`,k,m

q|λ| =
∑

i-vacant, i≤m
λ⊂(k`)

q|λ| = 1+
m∑
i=1

qi
[
k
i

]
q

`−i∑
j=0

qj(k−i+1)

[
i + j − 1

j

]
q

.

Equivalently, for each m = 1, 2, ...,min(k, `),

∑
λ∈P`,k,m\P`,k,m−1

q|λ| =
∑

m−vacant
λ⊆(k`)

q|λ| = qm
[
k
m

]
q

`−m∑
j=0

qj(k−m+1)

[
m + j − 1

j

]
q

.

In other words, the q-binomial expression in the RHS of R-T conjecture
counts the number of partitions inside (k`) whose k-conjugate is
m-bounded.
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Example: ` = 3, k = 3 (Continued)

Hilb(R3,3,0, q) = 1

Hilb(R3,3,1/R3,3,0, q) = q + q2 + q3 + q5 + q6 + q7 + q8 + q9

Hilb(R3,3,2/R3,3,1, q) = q2 + q3 + 2q4 + 2q5 + 2q6 + q7

Hilb(R3,3,3/R3,3,2, q) = q3
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k-Schur Functions

Recall the k-bounded symmetric function ring Λ(k) has bases

{hλ | λ ⊂ (k`)} and {eλ | λ ⊂ (k`)}.

Definition

The k-Schur functions, indexed by k-bounded partitions, form another
basis of Λ(k) and are defined by inverting the unitriangular system in Λ(k):

hλ = s
(k)
λ +

∑
µ:µ.λ

K
(k)
µλ s

(k)
µ for all λ1, µ1 ≤ k

Remarks:

µ . λ is the dominance partial ordering on partitions of a fixed size
n defined by the condition µ1 + · · ·+ µi > λ1 + · · ·+ λi for some i
and µ1 + · · ·+ µj = λ1 + · · ·+ λj for all j < i

K
(k)
µλ are the k-Kostka numbers, which are defined as the number of

k-tableaux of shape c(µ) and k-weight λ.
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k-tableaux and k-weight

Definition

Let c(λ) be a (k + 1)-core and let µ = (µ1, . . . , µr ) be a composition of
|λ|. A k-tableau of shape c(λ) and k-weight µ is a filling of c(λ) with
integers 1, 2, . . . , r such that

rows are weakly increasing and columns are strictly increasing

the collection of cells filled with letter i are labeled by exactly µi
distinct (k + 1)-residues.

Example

The 3-tableaux of 3-weight (1, 3, 1, 2, 1, 1) and shape (8, 5, 2, 1) are:

1 2 2 2 3 4 4 6
2 3 4 4 6
4 6
5

1 2 2 2 3 4 4 5
2 3 4 4 5
4 5
6

1 2 2 2 4 4 5 6
2 4 4 5 6
3 6
4
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The Involution ω

Recall that Λ(k) has an algebra involution ω that takes eλ to hλ. This
induces an algebra involution, also denoted as ω, between Rk,` and R`,k

that takes eλ to hλ. These two involutions are related in the following
commutative diagram:

Λ(k) Λ(k)

Rk,` R`,k

ω

φ ψ

ω

Hence R`,k ∼= Rk,`.

Theorem

The set {s(k)
λ | λ ⊆ (k`)} forms a basis of R`,k , where s

(k)
λ denotes its

image under the canonical surjection Λ(k) → R`,k .
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The action of ω on k-schur functions

The commutative diagram from the previous slide:

Λ(k) Λ(k)

Rk,` R`,k

ω

φ ψ

ω

Theorem

The involution ω : Λ(k) → Λ(k) has the following action on the k-Schur
basis

ω(s
(k)
λ ) = s

(k)

λω(k)
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k-Schur Functions and k-Conjugation

Combining the two theorems in the previous two slides, we get

Corollary

The set {s(k)

λω(k) | λ ⊆ (k`)} is a basis of Rk,`.

Recall that we denote:

P`,k =: {λ | λω(k) ⊂ (k`)}
P`,k,m =: {λ | λ1 ≤ m, λω(k) ⊂ (k`)}.

So the corollary says that {s(k)
λ | λ ∈ Pk,`} is a basis of R`,k .
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Filtered Bases Conjectures

We conjecture that

Conjectures (Existence of Filtered Bases)

1 (a) The set {hλ | λ ∈ Pk,`} is a basis of R`,k , and more strongly
(b) the set {hλ | λ ∈ Pk,`,m} is a basis of R`,k,m for each m = 1, 2, . . ..

2 (a) The set {s(i)
λ | λ ∈ Pk,`, i = λ1} is a basis of R`,k , and more strongly

(b) the set {s(i)
λ | λ ∈ Pk,`,m, i = λ1} is a basis of R`,k,m for each

m = 1, 2, . . ..

Remarks:

Part (b) of either conjecture implies the full R-T conjecture due to
the new combinatorial interpretation.

Part (a) of either conjecture will show half of the R-T conjecture
(LHS ≥ RHS), which is sufficient to greatly simplify the proof of
Hoffman’s theorem.
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Hoffman’s Theorem

Theorem (Hoffman)

For ` 6= k, every graded algebra endomorphism φ : R`,k → R`,k which does
not annihilate R`,k1 is of the form φα(x) = αdeg(x)x for some α ∈ Q×.
For ` = k, any such endomorphism is either of the form φα or ω ◦ φα,
where ω : Rk,` → R`,k is the algebra involution that takes any hi to ei .

The R-T conjecture simplifies Hoffman’s original proof of this theorem.
we observed conj. 1(a) or 1(b) from the previous slide suffices to imply
that Gr(k,Ck+`) has the fixed point property if and only if k` is odd.
We refer the interested readers to Reiner and Tudose’s paper Conjectures
on the cohomology of the Grassmannian [5].
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Lagrangian Analogue

Definition

For a strictly decreasing partition λ = (λ1 > · · · > λ`), we define its
shifted Young diagram to be a diagram with λi boxes in row i with each
row shifted one unit right of the previous one. An ambient triangle of
size n, denoted as ∆n, is a shifted Young diagram
λ = (n > n − 1 > · · · > 1).

Example

An ambient triangle ∆5 and a shifted Young diagram λ = (5, 2, 1) colored
gray are illustrated below.
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Lagrangian Analogue (Continued)

In Lie type C, we replace Gr(`,Ck+`) by the Lagrangian Grassmannian
LG(n,C2n) and define the graded ring Rn

LG := H∗(LG(n, 2n);Q).
The ring has a nice presentation due to Borel:

Rn
LG
∼= Q[e1, e2, . . . , en] /

(
e2
i + 2

∑n−i
k=1(−1)kei+kei−k

)
i=1,2,...,n

Theorem

Hilb(Rn
LG, q) =

∑
λ⊂∆n

q|λ| = (1 + q)(1 + q2)(1 + q3) · · · (1 + qn).

The R-T Conjecture (Type C Analogue)

For each m = 0, 1, · · · , n,

Hilb(Rn,m
LG , q) = 1 +

∑
1≤i≤m
i odd

qi
n−i∑
j=0

q(j+1
2 )
[
i + j
i

]
q

. (5.1)
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