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Introduction

I Let G be any group.

I Let M ≥ 2 be an integer. Define the power map ωM : G → G
by g 7→ gM .

I Let GM = ωM(G ) = {gM |g ∈ G}.
I If α ∈ GM , we call α an Mth power element in G , or, we say

that α has an Mth root in G .

I GM is the union of certain conjugacy classes of G .

I If C is a conjugacy class of G , such that C ⊂ GM , then we
call C , a Mth power conjugacy class.

I In this talk, we will consider G = GL(n, q), which is the group
of all invertible matrices over the finite field Fq.
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Broad Questions

I What does an Mth power element in GL(n, q) look like?

I Consider the ratio |GL(n,q)M |
|GL(n,q)| , which is the probability that

randomly chosen element in GL(n, q) is a Mth power.

I What is the value of |GL(n,q)M |
|GL(n,q)| , or can we estimate it, by

giving tight bounds.

I Fix M, n. Consider the set,

{ |GL(n,q)M |
|GL(n,q)| : q is a prime-power} ⊆ (0, 1]. What are the limit

points of this set? Similar asymptotic question can be asked
by fixing M and q, and varying n.

I Can one count the number of Mth power conjugacy classes in
GL(n, q)?
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Results on powers in Sn

I For r ≥ 2, consider S r
n = {πr |π ∈ Sn} be the set of r th power

permutations in Sn. Let, pr (n) := |S r
n |
n! .

I J.Blum(1974): Using generating functions, he proved that
p2(2n + 1) = p2(2n) for n ≥ 1. Further, showed that

p2(n) ∼ K
√

2
πn
− 1

2 , where K =
∞∏
k=1

cosh( 1
2k ).

I Bona et.al.(2001): Studied r th powers in Sn for a prime r ,
and showed pr (n + 1) = pr (n) where n 6≡ −1(mod r).
Moreover they showed that pr (n) is decreasing sequence in n,
and lim

n→∞
pr (n) = 0.

I N.Pouyanne (2002) For r ≥ 2,

pr (n) ∼n→∞
πr

n1−ϕ(r)/r

where ϕ denotes the Euler’s phi function and πr , an explicit
constant.
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Statistical Properties in Finite Classical Groups

I J. Fulman and G. Wall(1999): separately studied the
probability that a randomly chosen matrix in GL(n, q) is a
semisimple, regular, or a regular semisimple element.

I They obtained generating functions of these proportions and
proved asymptotic results by studying the analytic properties
of these generating functions.

I Let GL(n, q)rs denote the set of all regular semisimple

elements in GL(n, q). They proved, lim
n→∞

|GL(n,q)rs |
|GL(n,q)| = 1− 1

q

I C.Praeger, P.Neumann, Fulman (2005): extended the
results to other finite classical groups like Sp(2n, q),U(n, q)
etc. using a generating function approach.



Statistical Properties in Finite Classical Groups

I J. Fulman and G. Wall(1999): separately studied the
probability that a randomly chosen matrix in GL(n, q) is a
semisimple, regular, or a regular semisimple element.

I They obtained generating functions of these proportions and
proved asymptotic results by studying the analytic properties
of these generating functions.

I Let GL(n, q)rs denote the set of all regular semisimple

elements in GL(n, q). They proved, lim
n→∞

|GL(n,q)rs |
|GL(n,q)| = 1− 1

q

I C.Praeger, P.Neumann, Fulman (2005): extended the
results to other finite classical groups like Sp(2n, q),U(n, q)
etc. using a generating function approach.



Statistical Properties in Finite Classical Groups

I J. Fulman and G. Wall(1999): separately studied the
probability that a randomly chosen matrix in GL(n, q) is a
semisimple, regular, or a regular semisimple element.

I They obtained generating functions of these proportions and
proved asymptotic results by studying the analytic properties
of these generating functions.

I Let GL(n, q)rs denote the set of all regular semisimple

elements in GL(n, q). They proved, lim
n→∞

|GL(n,q)rs |
|GL(n,q)| = 1− 1

q

I C.Praeger, P.Neumann, Fulman (2005): extended the
results to other finite classical groups like Sp(2n, q),U(n, q)
etc. using a generating function approach.



Statistical Properties in Finite Classical Groups

I J. Fulman and G. Wall(1999): separately studied the
probability that a randomly chosen matrix in GL(n, q) is a
semisimple, regular, or a regular semisimple element.

I They obtained generating functions of these proportions and
proved asymptotic results by studying the analytic properties
of these generating functions.

I Let GL(n, q)rs denote the set of all regular semisimple

elements in GL(n, q). They proved, lim
n→∞

|GL(n,q)rs |
|GL(n,q)| = 1− 1

q

I C.Praeger, P.Neumann, Fulman (2005): extended the
results to other finite classical groups like Sp(2n, q),U(n, q)
etc. using a generating function approach.



Certain related Questions

I Let M ≥ 2. Suppose, GL(n, q)Mrg ,GL(n, q)Mss ,GL(n, q)Mrs be the

set of Mth power regular, semisimple and, regular semisimple
elements in GL(n, q).

I Obtain generating function for the proportion of Mth power
regular, semisimple, and regular semisimple elements in
GL(n, q), and hence find estimates and asymptotics of these
proportions?

I Enumerate the number of Mth power regular, semisimple and
regular semisimple classes.
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Some notations

I A Partition is a collection of non-negative integers
λ = (λ1, λ2, . . .), such that λ1 ≥ λ2 ≥ . . . and |λ| =

∑
i
λi is

finite.

I The positive integer λi is called a part of the partition λ. If
|λ| = n, we say λ is a partition of n, or write λ ` n.

I Let λ be a partition. For i ≥ 1, let mi denote the number of
times i occur as a part in λ. Then, in power notation, we
write λ = 1m12m2 . . .. Ex- (3, 1, 1, 1) ` 6 which is written as
13.3 ` 6 in power notation.

I Let Λ denote the set of all partitions, which also includes the
empty partition of 0.
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Some notations

I The Young Diagram corresponding to a partition is an
arrangement of square boxes in rows and columns, where the
i th row consists of λi number of boxes. Example- The Young
diagram of the partition (4, 2, 1) ` 7 is,

I The conjugate transpose of a partition λ ` n, denoted by λ
′

is
also a partition of n obtained by transposing the rows and
columns of the Young diagram of λ.
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Some notations

I Example-if λ = (4, 2, 1) ` 7, then λ
′

is given by the Young
diagram

Thus λ
′

= (3, 2, 1, 1) ` 7.

I Let Φ denote the number of monic non-constant irreducible
polynomials over Fq except the linear polynomial x .

I Let N(q, d) denote the number of polynomial of degree d in
Φ.

N(q, d) =
1

d

∑
r |d

µ(r)(qd/r − 1)

where µ is the Möbius function.
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A Combinatorial parametrization of the conjugacy classes
in GL(n, q)

‘

I Consider a map from Φ→ Λ. Such a function, attaches to
each f ∈ Φ, a partition λ of |λ|. We say, f 7→ λf ` |λf |

I The conjugacy classes in GL(n, q) are in one-one
correspondence with functions from Φ→ Λ satisfying the
relation

∑
f ∈Φ

deg(f )|λf | = n.

I Let C be a conjugacy class of GL(n, q), and α ∈ C . Recall
that the Fq[x ]-module Vα has the decomposition,

Vα = V ∼= N1 ⊕ N2 ⊕ . . .⊕ Nt

where Ni is the fi -primary component of V , where fi is a
monic, non-constant, irreducible polynomial. Thus,

Ni =
Fq[x ]

(fi (x)λi1 )
⊕ Fq[x ]

(fi (x)λi2 )
⊕ · · · ⊕ Fq[x ]

(fi (x)λir )
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A Combinatorial parametrization of the conjugacy classes
in GL(n, q)

I Thus, mapping fi to the partition (λi1 , λi2 , . . .) = λfi , for each
i = 1, 2, . . . , t and mapping all other polynomials in Φ to the
empty partition of 0, we get a function from Φ→ Λ satisfying∑
f ∈Φ

deg(f )|λf | = n( since, Dim(Ni ) = deg(fi )|λfi | for all

1 ≤ i ≤ t).

I Conversely a function Φ→ Λ satisfying the condition∑
f ∈Φ

deg(f )|λf | = n defines a conjugacy class, say C , in

GL(n, q) uniquely, where each pair (f , λf )(such that
|λf | > 0), defines the f -primary component of an element in
C . This correspondence is bijective since a conjugacy class in
GL(n, q) is uniquely defined by a collection of admissible
elementary divisors.
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Cycle index in GL(n, q)

I Let xf ,λ be a variable associated to a pair (f , λ), where f is a
monic non-constant irreducible polynomial and λ a partition.
The cycle index is defined to be

ZGL(n,q) =
1

|GL(n, q)|
∑

α∈GL(n,q)

∏
f ∈Φ

|λf (α)|>0

xf ,λf (α).

I Consider a monomial of the form xf1,λf1xf2,λf2 . . . xfl ,λfl .

Suppose,
l∑

i=1
deg(fi )|λfi | = n.

I The coefficient of the above monomial is |Cl(α)|
|GL(n,q)| , where α is

such that, the combinatorial data of Cl(α) is given by the
function Φ→ Λ defined by fi 7→ λfi for 1 ≤ i ≤ l .

I Thus, the coefficient is equal to 1
|Z(α)| , where Z(α) denote

the centralizer of α in GL(n, q).
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Generating functions for the proportion of regular,
semisimple, and regular semisimple matrices

I A matrix A over Fq is called semisimple if it is diagonalisable
in F̄q.

I A matrix A over Fq is called regular if the minimal polynomial
of A coincide with the characteristic polynomial of A.

Therefore, in terms of the combinatorial parametrization of an
element (or, the conjugacy class in which it is present), we have,

1. α is semisimple ⇐⇒ λf (α) = (1, 1, . . . , 1) ` |λf (α)|, for
each f ∈ Φ such that |λf (α)| > 0.

2. α is regular ⇐⇒ λf (α) = (|λf (α)|) ` |λf (α)|, for each
f ∈ Φ such that |λf (α)| > 0.

3. α is regular semisimple ⇐⇒ |λf (α)| = 1, for each f ∈ Φ
such that |λf (α)| > 0.
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M-power polynomials

I Let M ≥ 2 be an integer. For a polynomial,
f (x) = xd + ad−1x

d−1 + . . .+ a1x + a0 ∈ Fq[x ], we denote
the composed polynomial,

f (xM) = xMd + ad−1x
M(d−1) + . . .+ a1x

M + a0.

Definition 4.1 (M-power polynomial)

A non-constant, irreducible, monic polynomial f (x) ∈ Fq[x ] is said
to be an M-power polynomial if f (xM) has an irreducible factor
of degree deg(f ). In general, a non-constant, monic polynomial f
is said to be an M-power polynomial if each irreducible factor of
f is an M-power polynomial.

I Let ΦM be the set all f ∈ Φ which are M-power polynomials.
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M-power polynomials

I Let NM(q, d) denote the number of monic non-constant
M-power polynomials of degree d except x .

I

NM(q, d) =
1

d

∑
r |d

µ(r)

(
M(qd/r − 1), (qd − 1)

)
(M, qd − 1)

.

Proposition 4.2

Suppose (M, q) = 1. Suppose M = ra, where r is a prime.
Suppose f (x) is an irreducible polynomial of degree d over Fq.
Then either of the two cases occur:

1. the polynomial f (xM) has an irreducible factor of degree d,
that is, f is an M-power polynomial.

2. the polynomial f (xM) factors as a product of ra−i irreducible
polynomials each of degree dr i for some 1 ≤ i ≤ a.
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How does a M th power element in GL(n, q) look like?

A Notation - Suppose (M, q) = 1 and M = ra, where r is a prime.
For 1 ≤ i ≤ a, let ΦM,i be the set of all f ∈ Φ such that f (xM)
factors as a product irreducible polynomials each of degree equal
to r ideg(f ). We have,

Φ = ΦM ∪ ∪ai=1ΦM,i

Theorem 4.3
Let M = ra, where r is a prime and (q,M) = 1. Let α ∈ GL(n, q).
Then, XM = α has a solution in GL(n, q) if and only if for each
f ∈ Φ such that |λf (α)| > 0, one of the following holds:

1. f ∈ ΦM , that is, f is M-power.

2. f ∈ ΦM,b for some b, 1 ≤ b ≤ a, and rb | mj(λf ) for all j ≥ 1.
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How does a M th power element in GL(n, q) look like?

Corollary 4.4

Let M = ra where r is a prime and (q,M) = 1. Let α ∈ GL(n, q)
be semisimple. Then, XM = α has a solution in GL(n, q) if and
only if for each f ∈ Φ such that |λf (α)| > 0, one of the following
holds:

1. f ∈ ΦM , that is, f is M-power.

2. f ∈ ΦM,b for some b, 1 ≤ b ≤ a, and rb | |λf |.

Proposition 4.5

Suppose M ≥ 2 be an integer and (q,M) = 1. Let α ∈ GL(n, q)
be a regular (or, regular semisimple) element . Then, α is a Mth

power iff f is a M-power polynomial, for all f such that
|λf (α)| > 0.
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Sketch of Proof.
Step 1: Suppose α ∈ GL(n, q) such that there exists a single
polynomial f ∈ Φ of degree k , such that |λf | > 0. Let
λf = (λ1, λ2, . . . , λr ). We get a combinatorial parametrization of
the matrix αM .
It turns out that the combinatorial data of αM consists of a single
polynomial fM of degree d(≤ k), which is the minimal polynomial
of the Mth power of a root of f , and the partition λfM is given by

(λ1, . . . , λ1︸ ︷︷ ︸
k
d

times

, λ2, . . . , λ2︸ ︷︷ ︸
k
d

times

, . . . , λr , . . . , λr︸ ︷︷ ︸
k
d

times

)

Step 2: Extend to this to a general element α ∈ GL(n, q).
Step 3: Suppose βM = α. Thus, the combinatorial data of βM

must match with that of α. Matching these data we obtain the
necessary condition. The sufficient condition is obtained by
explicitly finding a β ∈ GL(n, q) such that βM = α.
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Generating functions for the powers in GL(n, q)

Theorem 4.6
Let M ≥ 2 be an integer and (q,M) = 1. Then,

1. The generating function for the proportion of regular
semisimple elements which are Mth powers in GL(n, q) is

1 +
∞∑
n=1

|GL(n, q)Mrs |
|GL(n, q)|

un =
∏
d≥1

(
1 +

ud

qd − 1

)NM(q,d)

.

2. The generating function for the proportion of regular elements
which are Mth powers is

1+
∞∑
n=1

|GL(n, q)Mrg |
|GL(n, q)|

un =
∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

NM(q,d)
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Generating functions for the powers in GL(n, q)

Theorem 4.7
Let M ≥ 2 be a prime and (q,M) = 1. The generating function for
the proportion of Mth power semisimple elements in GL(n, q) is,

1+
∞∑
n=1

|GL(n, q)Mss |
|GL(n, q)|

un =
∏
d≥1

1 +
∞∑
j=1

ujd

q
j(j−1)d

2

j∏
t=1

(qtd − 1)


NM(q,d)

×
∏
d≥1

1 +
∞∑
j=1

uMjd

q
Mj(Mj−1)d

2

Mj∏
t=1

(qtd − 1)


N̂(q,d)

where N̂(q, d) = N(q, d)− NM(q, d).



The M th-power probability in lower ranks

Lemma 4.8 (Surjectivity)

Let M ≥ 2 be a prime. Then the power map ωM on GL(n, q) is
surjective iff (M, q) = 1 and n < o(q), where o(q) is the order of
q in (Z/MZ)×.

Theorem 4.9
Let M be a prime. Assume (M, q) = 1, and let t denote the order
of q in (Z/MZ)×. Then,

|GL(n, q)M |
|GL(n, q)|

=
∑
λ ` n

λ = 1m1 . . . imi . . .

1

Mπt(λ)

∏
i

1

mi !imi

if n < Mt, where πt(λ) denotes the number of parts of λ ` n
divisible by t.
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The M th-power probability in lower ranks

Example 4.10

Let M = 3. Let, (3, q) = 1.

1. Let t = 1, that is, q ≡ 1(mod 3). Then,

I |GL(1,q)3|
|GL(1,q)| = 1

3

I |GL(2,q)3|
|GL(2,q)| = 1

9.2 + 1
3.2 = 2

9

2. Let t = 2, that is, q ≡ 2(mod 3). Then,

I |GL(1,q)3|
|GL(1,q)| = 1

I |GL(2,q)3|
|GL(2,q)| = 1

2 + 1
3.2 = 2

3

I |GL(3,q)3|
|GL(3,q)| = 1

6 + 1
3.2 + 1

3 = 2
3

I |GL(4,q)3|
|GL(4,q)| = |GL(5,q)3|

|GL(5,q)| = 5
9
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