Generating functions for the powers in GL(n, q)

Rijubrata Kundu

Indian Institute of Science Education and Research, Pune

September 24, 2020

Contents

Introduction

Motivation

Cycle index in GL(n, q)

Generating function for powers in GL(n, q)

Motivation

Cycle index in GL(n, q)

Generating function for powers in GL(n, q)

▶ Let *G* be any group.

- ▶ Let *G* be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.

- ▶ Let *G* be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.
- $\blacktriangleright \text{ Let } G^M = \omega_M(G) = \{g^M | g \in G\}.$

- ► Let G be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.
- ▶ Let $G^M = \omega_M(G) = \{g^M | g \in G\}.$
- ▶ If $\alpha \in G^M$, we call α an M^{th} power element in G, or, we say that α has an M^{th} root in G.

- ► Let G be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.
- ▶ Let $G^M = \omega_M(G) = \{g^M | g \in G\}.$
- ▶ If $\alpha \in G^M$, we call α an M^{th} power element in G, or, we say that α has an M^{th} root in G.
- ▶ G^M is the union of certain conjugacy classes of G.

- ► Let G be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.
- ▶ Let $G^M = \omega_M(G) = \{g^M | g \in G\}.$
- ▶ If $\alpha \in G^M$, we call α an M^{th} power element in G, or, we say that α has an M^{th} root in G.
- $ightharpoonup G^M$ is the union of certain conjugacy classes of G.
- ▶ If C is a conjugacy class of G, such that $C \subset G^M$, then we call C, a M^{th} power conjugacy class.

- ► Let G be any group.
- ▶ Let $M \ge 2$ be an integer. Define the power map $\omega_M : G \to G$ by $g \mapsto g^M$.
- ▶ Let $G^M = \omega_M(G) = \{g^M | g \in G\}.$
- ▶ If $\alpha \in G^M$, we call α an M^{th} power element in G, or, we say that α has an M^{th} root in G.
- ▶ G^M is the union of certain conjugacy classes of G.
- ▶ If C is a conjugacy class of G, such that $C \subset G^M$, then we call C, a M^{th} power conjugacy class.
- ▶ In this talk, we will consider G = GL(n, q), which is the group of all invertible matrices over the finite field \mathbb{F}_q .

▶ What does an M^{th} power element in GL(n, q) look like?

- ▶ What does an M^{th} power element in GL(n, q) look like?
- ► Consider the ratio $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, which is the probability that randomly chosen element in GL(n,q) is a M^{th} power.

- ▶ What does an M^{th} power element in GL(n, q) look like?
- ► Consider the ratio $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, which is the probability that randomly chosen element in GL(n,q) is a M^{th} power.
- ▶ What is the value of $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, or can we estimate it, by giving tight bounds.

- ▶ What does an M^{th} power element in GL(n, q) look like?
- ► Consider the ratio $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, which is the probability that randomly chosen element in GL(n,q) is a M^{th} power.
- ▶ What is the value of $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, or can we estimate it, by giving tight bounds.
- Fix M, n. Consider the set, $\{\frac{|GL(n,q)^M|}{|GL(n,q)|}: q \text{ is a prime-power}\} \subseteq (0,1]$. What are the limit points of this set? Similar asymptotic question can be asked by fixing M and q, and varying n.

- ▶ What does an M^{th} power element in GL(n, q) look like?
- ► Consider the ratio $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, which is the probability that randomly chosen element in GL(n,q) is a M^{th} power.
- ▶ What is the value of $\frac{|GL(n,q)^M|}{|GL(n,q)|}$, or can we estimate it, by giving tight bounds.
- Fix M, n. Consider the set, $\left\{\frac{|GL(n,q)^M|}{|GL(n,q)|}: q \text{ is a prime-power}\right\} \subseteq (0,1]$. What are the limit points of this set? Similar asymptotic question can be asked by fixing M and q, and varying n.
- ► Can one count the number of M^{th} power conjugacy classes in GL(n, q)?

Motivation

Cycle index in GL(n, q)

Generating function for powers in GL(n, q)

▶ For $r \ge 2$, consider $S_n^r = \{\pi^r | \pi \in S_n\}$ be the set of r^{th} power permutations in S_n . Let, $p_r(n) := \frac{|S_n^r|}{n!}$.

- ▶ For $r \ge 2$, consider $S_n^r = \{\pi^r | \pi \in S_n\}$ be the set of r^{th} power permutations in S_n . Let, $p_r(n) := \frac{|S_n^r|}{n!}$.
- ▶ **J.Blum(1974)**: Using generating functions, he proved that $p_2(2n+1) = p_2(2n)$ for $n \ge 1$. Further, showed that $p_2(n) \sim K\sqrt{\frac{2}{\pi}}n^{-\frac{1}{2}}$, where $K = \prod_{k=1}^{\infty} \cosh(\frac{1}{2k})$.

- ▶ For $r \ge 2$, consider $S_n^r = \{\pi^r | \pi \in S_n\}$ be the set of r^{th} power permutations in S_n . Let, $p_r(n) := \frac{|S_n^r|}{n!}$.
- ▶ **J.Blum(1974)**: Using generating functions, he proved that $p_2(2n+1)=p_2(2n)$ for $n\geq 1$. Further, showed that $p_2(n)\sim K\sqrt{\frac{2}{\pi}}n^{-\frac{1}{2}}$, where $K=\prod_{k=1}^{\infty}\cosh(\frac{1}{2k})$.
- ▶ Bona et.al.(2001): Studied r^{th} powers in S_n for a prime r, and showed $p_r(n+1) = p_r(n)$ where $n \not\equiv -1 \pmod{r}$. Moreover they showed that $p_r(n)$ is decreasing sequence in n, and $\lim_{n\to\infty} p_r(n) = 0$.

- ▶ For $r \ge 2$, consider $S_n^r = \{\pi^r | \pi \in S_n\}$ be the set of r^{th} power permutations in S_n . Let, $p_r(n) := \frac{|S_n^r|}{n!}$.
- ▶ **J.Blum(1974)**: Using generating functions, he proved that $p_2(2n+1)=p_2(2n)$ for $n\geq 1$. Further, showed that $p_2(n)\sim K\sqrt{\frac{2}{\pi}}n^{-\frac{1}{2}}$, where $K=\prod_{k=1}^{\infty}\cosh(\frac{1}{2k})$.
- ▶ Bona et.al.(2001): Studied r^{th} powers in S_n for a prime r, and showed $p_r(n+1) = p_r(n)$ where $n \not\equiv -1 \pmod{r}$. Moreover they showed that $p_r(n)$ is decreasing sequence in n, and $\lim_{n\to\infty} p_r(n) = 0$.
- ▶ **N.Pouyanne (2002)** For $r \ge 2$,

$$p_r(n) \sim_{n \to \infty} \frac{\pi_r}{n^{1-\varphi(r)/r}}$$

where φ denotes the Euler's phi function and π_r , an explicit constant.

▶ **J. Fulman and G. Wall(1999)**: separately studied the probability that a randomly chosen matrix in GL(n, q) is a semisimple, regular, or a regular semisimple element.

- ▶ **J. Fulman and G. Wall(1999)**: separately studied the probability that a randomly chosen matrix in GL(n, q) is a semisimple, regular, or a regular semisimple element.
- ► They obtained generating functions of these proportions and proved asymptotic results by studying the analytic properties of these generating functions.

- ▶ **J. Fulman and G. Wall(1999)**: separately studied the probability that a randomly chosen matrix in GL(n, q) is a semisimple, regular, or a regular semisimple element.
- ► They obtained generating functions of these proportions and proved asymptotic results by studying the analytic properties of these generating functions.
- Let $GL(n,q)_{rs}$ denote the set of all regular semisimple elements in GL(n,q). They proved, $\lim_{n\to\infty}\frac{|GL(n,q)_{rs}|}{|GL(n,q)|}=1-\frac{1}{q}$

- ▶ **J. Fulman and G. Wall(1999)**: separately studied the probability that a randomly chosen matrix in GL(n, q) is a semisimple, regular, or a regular semisimple element.
- ► They obtained generating functions of these proportions and proved asymptotic results by studying the analytic properties of these generating functions.
- Let $GL(n,q)_{rs}$ denote the set of all regular semisimple elements in GL(n,q). They proved, $\lim_{n\to\infty}\frac{|GL(n,q)_{rs}|}{|GL(n,q)|}=1-\frac{1}{q}$
- **C.Praeger, P.Neumann, Fulman (2005)**: extended the results to other finite classical groups like Sp(2n, q), U(n, q) etc. using a generating function approach.

Certain related Questions

▶ Let $M \ge 2$. Suppose, $GL(n,q)_{rg}^M$, $GL(n,q)_{ss}^M$, $GL(n,q)_{rs}^M$ be the set of M^{th} power regular, semisimple and, regular semisimple elements in GL(n,q).

Certain related Questions

- ▶ Let $M \ge 2$. Suppose, $GL(n,q)_{rg}^M$, $GL(n,q)_{ss}^M$, $GL(n,q)_{rs}^M$ be the set of M^{th} power regular, semisimple and, regular semisimple elements in GL(n,q).
- Dobtain generating function for the proportion of M^{th} power regular, semisimple, and regular semisimple elements in GL(n,q), and hence find estimates and asymptotics of these proportions?

Certain related Questions

- ▶ Let $M \ge 2$. Suppose, $GL(n,q)_{rg}^M$, $GL(n,q)_{ss}^M$, $GL(n,q)_{rs}^M$ be the set of M^{th} power regular, semisimple and, regular semisimple elements in GL(n,q).
- Dobtain generating function for the proportion of M^{th} power regular, semisimple, and regular semisimple elements in GL(n,q), and hence find estimates and asymptotics of these proportions?
- ▶ Enumerate the number of M^{th} power regular, semisimple and regular semisimple classes.

Motivation

Cycle index in GL(n, q)

Generating function for powers in GL(n, q)

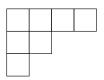
A Partition is a collection of non-negative integers $\lambda = (\lambda_1, \lambda_2, \ldots)$, such that $\lambda_1 \geq \lambda_2 \geq \ldots$ and $|\lambda| = \sum_i \lambda_i$ is finite.

- A Partition is a collection of non-negative integers $\lambda = (\lambda_1, \lambda_2, \ldots)$, such that $\lambda_1 \geq \lambda_2 \geq \ldots$ and $|\lambda| = \sum_i \lambda_i$ is finite.
- The positive integer λ_i is called a part of the partition λ . If $|\lambda| = n$, we say λ is a partition of n, or write $\lambda \vdash n$.

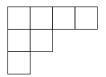
- A Partition is a collection of non-negative integers $\lambda = (\lambda_1, \lambda_2, \ldots)$, such that $\lambda_1 \geq \lambda_2 \geq \ldots$ and $|\lambda| = \sum_i \lambda_i$ is finite.
- The positive integer λ_i is called a part of the partition λ . If $|\lambda| = n$, we say λ is a partition of n, or write $\lambda \vdash n$.
- Let λ be a partition. For $i \geq 1$, let m_i denote the number of times i occur as a part in λ . Then, in power notation, we write $\lambda = 1^{m_1}2^{m_2} \dots$ Ex- $(3,1,1,1) \vdash 6$ which is written as $1^3.3 \vdash 6$ in power notation.

- A Partition is a collection of non-negative integers $\lambda = (\lambda_1, \lambda_2, \ldots)$, such that $\lambda_1 \geq \lambda_2 \geq \ldots$ and $|\lambda| = \sum_i \lambda_i$ is finite.
- The positive integer λ_i is called a part of the partition λ . If $|\lambda| = n$, we say λ is a partition of n, or write $\lambda \vdash n$.
- Let λ be a partition. For $i \geq 1$, let m_i denote the number of times i occur as a part in λ . Then, in power notation, we write $\lambda = 1^{m_1} 2^{m_2} \dots$ Ex- $(3,1,1,1) \vdash 6$ which is written as $1^3.3 \vdash 6$ in power notation.
- Let Λ denote the set of all partitions, which also includes the empty partition of 0.

▶ The Young Diagram corresponding to a partition is an arrangement of square boxes in rows and columns, where the i^{th} row consists of λ_i number of boxes. Example- The Young diagram of the partition $(4,2,1) \vdash 7$ is,



▶ The Young Diagram corresponding to a partition is an arrangement of square boxes in rows and columns, where the i^{th} row consists of λ_i number of boxes. Example- The Young diagram of the partition $(4,2,1) \vdash 7$ is,



▶ The conjugate transpose of a partition $\lambda \vdash n$, denoted by λ' is also a partition of n obtained by transposing the rows and columns of the Young diagram of λ .

Example-if $\lambda = (4,2,1) \vdash 7$, then λ' is given by the Young diagram

Thus
$$\lambda' = (3, 2, 1, 1) \vdash 7$$
.

Example-if $\lambda = (4,2,1) \vdash 7$, then $\lambda^{'}$ is given by the Young diagram

Thus
$$\lambda' = (3, 2, 1, 1) \vdash 7$$
.

Let Φ denote the number of monic non-constant irreducible polynomials over \mathbb{F}_q except the linear polynomial x.

Some notations

Example-if $\lambda = (4,2,1) \vdash 7$, then $\lambda^{'}$ is given by the Young diagram

Thus
$$\lambda' = (3, 2, 1, 1) \vdash 7$$
.

- Let Φ denote the number of monic non-constant irreducible polynomials over \mathbb{F}_q except the linear polynomial x.
- Let N(q, d) denote the number of polynomial of degree d in Φ .

$$N(q,d) = \frac{1}{d} \sum_{r|d} \mu(r) (q^{d/r} - 1)$$

where μ is the Möbius function.

► Consider a map from $\Phi \to \Lambda$. Such a function, attaches to each $f \in \Phi$, a partition λ of $|\lambda|$. We say, $f \mapsto \lambda_f \vdash |\lambda_f|$

- ► Consider a map from $\Phi \to \Lambda$. Such a function, attaches to each $f \in \Phi$, a partition λ of $|\lambda|$. We say, $f \mapsto \lambda_f \vdash |\lambda_f|$
- ► The conjugacy classes in GL(n,q) are in one-one correspondence with functions from $\Phi \to \Lambda$ satisfying the relation $\sum_{f \in \Phi} \deg(f) |\lambda_f| = n$.

- ► Consider a map from $\Phi \to \Lambda$. Such a function, attaches to each $f \in \Phi$, a partition λ of $|\lambda|$. We say, $f \mapsto \lambda_f \vdash |\lambda_f|$
- ► The conjugacy classes in GL(n,q) are in one-one correspondence with functions from $\Phi \to \Lambda$ satisfying the relation $\sum_{f \in \Phi} \deg(f) |\lambda_f| = n$.
- Let C be a conjugacy class of GL(n,q), and $\alpha \in C$. Recall that the $\mathbb{F}_q[x]$ -module V_α has the decomposition,

$$V_{\alpha} = V \cong N_1 \oplus N_2 \oplus \ldots \oplus N_t$$

where N_i is the f_i -primary component of V, where f_i is a monic, non-constant, irreducible polynomial. Thus,

$$N_i = \frac{\mathbb{F}_q[x]}{(f_i(x)^{\lambda_{i_1}})} \oplus \frac{\mathbb{F}_q[x]}{(f_i(x)^{\lambda_{i_2}})} \oplus \cdots \oplus \frac{\mathbb{F}_q[x]}{(f_i(x)^{\lambda_{i_r}})}$$

Thus, mapping f_i to the partition $(\lambda_{i_1}, \lambda_{i_2}, \ldots) = \lambda_{f_i}$, for each $i = 1, 2, \ldots, t$ and mapping all other polynomials in Φ to the empty partition of 0, we get a function from $\Phi \to \Lambda$ satisfying $\sum_{f \in \Phi} \deg(f) |\lambda_f| = n($ since, $\operatorname{Dim}(N_i) = \deg(f_i) |\lambda_{f_i}|$ for all $1 \le i \le t$).

- Thus, mapping f_i to the partition $(\lambda_{i_1}, \lambda_{i_2}, \ldots) = \lambda_{f_i}$, for each $i=1,2,\ldots,t$ and mapping all other polynomials in Φ to the empty partition of 0, we get a function from $\Phi \to \Lambda$ satisfying $\sum_{f \in \Phi} \deg(f) |\lambda_f| = n($ since, $\operatorname{Dim}(N_i) = \deg(f_i) |\lambda_{f_i}|$ for all $1 \le i \le t$).
- Conversely a function $\Phi \to \Lambda$ satisfying the condition $\sum_{f \in \Phi} \deg(f) |\lambda_f| = n$ defines a conjugacy class, say C, in $\operatorname{GL}(n,q)$ uniquely, where each pair (f,λ_f) (such that $|\lambda_f| > 0$), defines the f-primary component of an element in C. This correspondence is bijective since a conjugacy class in $\operatorname{GL}(n,q)$ is uniquely defined by a collection of admissible elementary divisors.

Let $x_{f,\lambda}$ be a variable associated to a pair (f,λ) , where f is a monic non-constant irreducible polynomial and λ a partition. The **cycle index** is defined to be

$$Z_{\mathsf{GL}(n,q)} = \frac{1}{|\mathsf{GL}(n,q)|} \sum_{\alpha \in \mathsf{GL}(n,q)} \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} \mathsf{x}_{f,\lambda_f(\alpha)}.$$

Let $x_{f,\lambda}$ be a variable associated to a pair (f,λ) , where f is a monic non-constant irreducible polynomial and λ a partition. The **cycle index** is defined to be

$$Z_{\mathsf{GL}(n,q)} = \frac{1}{|\mathsf{GL}(n,q)|} \sum_{\alpha \in \mathsf{GL}(n,q)} \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} x_{f,\lambda_f(\alpha)}.$$

Consider a monomial of the form $x_{f_1,\lambda_{f_1}}x_{f_2,\lambda_{f_2}}\dots x_{f_l,\lambda_{f_l}}$. Suppose, $\sum\limits_{i=1}^{l}\deg(f_i)|\lambda_{f_i}|=n$.

Let $x_{f,\lambda}$ be a variable associated to a pair (f,λ) , where f is a monic non-constant irreducible polynomial and λ a partition. The **cycle index** is defined to be

$$Z_{\mathsf{GL}(n,q)} = \frac{1}{|\mathsf{GL}(n,q)|} \sum_{\alpha \in \mathsf{GL}(n,q)} \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} x_{f,\lambda_f(\alpha)}.$$

- Consider a monomial of the form $x_{f_1,\lambda_{f_1}}x_{f_2,\lambda_{f_2}}\dots x_{f_l,\lambda_{f_l}}$. Suppose, $\sum_{i=1}^{l} \deg(f_i)|\lambda_{f_i}| = n$.
- ► The coefficient of the above monomial is $\frac{|CI(\alpha)|}{|GL(n,q)|}$, where α is such that, the combinatorial data of $CI(\alpha)$ is given by the function $\Phi \to \Lambda$ defined by $f_i \mapsto \lambda_{f_i}$ for $1 \le i \le I$.

Let $x_{f,\lambda}$ be a variable associated to a pair (f,λ) , where f is a monic non-constant irreducible polynomial and λ a partition. The **cycle index** is defined to be

$$Z_{\mathsf{GL}(n,q)} = \frac{1}{|\mathsf{GL}(n,q)|} \sum_{\alpha \in \mathsf{GL}(n,q)} \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} \mathsf{x}_{f,\lambda_f(\alpha)}.$$

- Consider a monomial of the form $x_{f_1,\lambda_{f_1}}x_{f_2,\lambda_{f_2}}\dots x_{f_l,\lambda_{f_l}}$. Suppose, $\sum_{i=1}^{l} \deg(f_i)|\lambda_{f_i}| = n$.
- ▶ The coefficient of the above monomial is $\frac{|CI(\alpha)|}{|GL(n,q)|}$, where α is such that, the combinatorial data of $CI(\alpha)$ is given by the function $\Phi \to \Lambda$ defined by $f_i \mapsto \lambda_{f_i}$ for $1 \le i \le I$.
- ▶ Thus, the coefficient is equal to $\frac{1}{|\mathcal{Z}(\alpha)|}$, where $\mathcal{Z}(\alpha)$ denote the centralizer of α in GL(n,q).

Cycle index generating function

The fact that, for $\alpha \in GL(n, q)$,

$$|\mathcal{Z}(\alpha)| = \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} q^{\deg(f).\sum_j \lambda_{i_j}'^2} \prod_{t \ge 1} \left(\frac{1}{q^{\deg f}}\right)_{m_t(\lambda_f)}$$

where,
$$\left(\frac{u}{q}\right)_i = (1 - \frac{u}{q})(1 - \frac{u}{q^2})\dots(1 - \frac{u}{q^i})$$
, gives the factorization,

Cycle index generating function

The fact that, for $\alpha \in GL(n,q)$,

$$|\mathcal{Z}(\alpha)| = \prod_{\substack{f \in \Phi \\ |\lambda_f(\alpha)| > 0}} q^{\deg(f) \cdot \sum_j \lambda_{i_j}'^2} \prod_{t \geq 1} \left(\frac{1}{q^{\deg f}}\right)_{m_t(\lambda_f)}$$

where, $\left(\frac{u}{q}\right)_i = (1 - \frac{u}{q})(1 - \frac{u}{q^2})\dots(1 - \frac{u}{q^i})$, gives the factorization,

Theorem 3.1 (Cycle index generating function)

$$1 + \sum_{n=1}^{\infty} Z_{GL(n,q)} u^n =$$

$$\prod_{f \in \Phi} \left(1 + \sum_{j \geq 1} \sum_{\lambda \vdash j} x_{f,\lambda} \frac{u^{j.\deg(f)}}{q^{\deg(f).\sum_i (\lambda_i')^2} \prod_{t \geq 1} \left(\frac{1}{q^{\deg(f)}}\right)_{m_t(\lambda)}} \right)$$

▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}}_q$.

- ▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}_q}$.
- A matrix A over \mathbb{F}_q is called **regular** if the minimal polynomial of A coincide with the characteristic polynomial of A.

- ▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}_q}$.
- A matrix A over \mathbb{F}_q is called **regular** if the minimal polynomial of A coincide with the characteristic polynomial of A.

- ▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}_q}$.
- A matrix A over \mathbb{F}_q is called **regular** if the minimal polynomial of A coincide with the characteristic polynomial of A.

Therefore, in terms of the combinatorial parametrization of an element (or, the conjugacy class in which it is present), we have,

1. α is semisimple $\iff \lambda_f(\alpha) = (1, 1, \dots, 1) \vdash |\lambda_f(\alpha)|$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.

- ▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}_q}$.
- A matrix A over \mathbb{F}_q is called **regular** if the minimal polynomial of A coincide with the characteristic polynomial of A.

Therefore, in terms of the combinatorial parametrization of an element (or, the conjugacy class in which it is present), we have,

- 1. α is semisimple $\iff \lambda_f(\alpha) = (1, 1, \dots, 1) \vdash |\lambda_f(\alpha)|$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.
- 2. α is regular $\iff \lambda_f(\alpha) = (|\lambda_f(\alpha)|) \vdash |\lambda_f(\alpha)|$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.

- ▶ A matrix A over \mathbb{F}_q is called **semisimple** if it is diagonalisable in $\overline{\mathbb{F}_q}$.
- A matrix A over \mathbb{F}_q is called **regular** if the minimal polynomial of A coincide with the characteristic polynomial of A.

Therefore, in terms of the combinatorial parametrization of an element (or, the conjugacy class in which it is present), we have,

- 1. α is semisimple $\iff \lambda_f(\alpha) = (1, 1, \dots, 1) \vdash |\lambda_f(\alpha)|$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.
- 2. α is regular $\iff \lambda_f(\alpha) = (|\lambda_f(\alpha)|) \vdash |\lambda_f(\alpha)|$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.
- 3. α is regular semisimple $\iff |\lambda_f(\alpha)| = 1$, for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$.

1. The generating function for the regular semisimple elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{rs}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d>1} \left(1 + \frac{u^d}{q^d - 1}\right)^{N(q,d)}$$

1. The generating function for the regular semisimple elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{rs}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d \ge 1} \left(1 + \frac{u^d}{q^d - 1} \right)^{N(q,d)}$$

2. The generating function for the regular elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{rg}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d \ge 1} \left(1 + \sum_{j=1}^{\infty} \frac{u^{jd}}{q^{(j-1)d}(q^d - 1)} \right)^{N(q,d)}$$

1. The generating function for the regular semisimple elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{rs}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d \ge 1} \left(1 + \frac{u^d}{q^d - 1} \right)^{N(q,d)}$$

2. The generating function for the regular elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{rg}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d \ge 1} \left(1 + \sum_{j=1}^{\infty} \frac{u^{jd}}{q^{(j-1)d}(q^d - 1)} \right)^{N(q,d)}$$

3. The generating function for the semisimple elements is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathsf{GL}(n,q)_{ss}|}{|\mathsf{GL}(n,q)|} u^n = \prod_{d \geq 1} \left(1 + \sum_{j=1}^{\infty} \frac{u^{jd}}{q^{\frac{j(j-1)}{2}d} \prod\limits_{i=1}^{j} (q^{id} - 1)} \right)^{N(q,d)}$$

Introduction

Motivation

Cycle index in GL(n, q)

Generating function for powers in GL(n, q)

Let $M \geq 2$ be an integer. For a polynomial, $f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0 \in \mathbb{F}_q[x]$, we denote the composed polynomial,

$$f(x^M) = x^{Md} + a_{d-1}x^{M(d-1)} + \ldots + a_1x^M + a_0.$$

Let $M \ge 2$ be an integer. For a polynomial, $f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0 \in \mathbb{F}_q[x]$, we denote the composed polynomial,

$$f(x^M) = x^{Md} + a_{d-1}x^{M(d-1)} + \ldots + a_1x^M + a_0.$$

Definition 4.1 (M-power polynomial)

A non-constant, irreducible, monic polynomial $f(x) \in \mathbb{F}_q[x]$ is said to be an **M-power polynomial** if $f(x^M)$ has an irreducible factor of degree $\deg(f)$. In general, a non-constant, monic polynomial f is said to be an **M-power polynomial** if each irreducible factor of f is an M-power polynomial.

Let $M \geq 2$ be an integer. For a polynomial, $f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0 \in \mathbb{F}_q[x]$, we denote the composed polynomial,

$$f(x^M) = x^{Md} + a_{d-1}x^{M(d-1)} + \ldots + a_1x^M + a_0.$$

Definition 4.1 (M-power polynomial)

A non-constant, irreducible, monic polynomial $f(x) \in \mathbb{F}_q[x]$ is said to be an **M-power polynomial** if $f(x^M)$ has an irreducible factor of degree $\deg(f)$. In general, a non-constant, monic polynomial f is said to be an **M-power polynomial** if each irreducible factor of f is an M-power polynomial.

▶ Let Φ^M be the set all $f \in \Phi$ which are M-power polynomials.

Let $N_M(q, d)$ denote the number of monic non-constant M-power polynomials of degree d except x.

Let $N_M(q, d)$ denote the number of monic non-constant M-power polynomials of degree d except x.

$$N_M(q,d) = \frac{1}{d} \sum_{r|d} \mu(r) \frac{\left(M(q^{d/r}-1), (q^d-1)\right)}{\left(M, q^d-1\right)}.$$

Let $N_M(q, d)$ denote the number of monic non-constant M-power polynomials of degree d except x.

$$N_M(q,d) = \frac{1}{d} \sum_{r|d} \mu(r) \frac{\left(M(q^{d/r}-1), (q^d-1)\right)}{\left(M, q^d-1\right)}.$$

Proposition 4.2

Suppose (M,q)=1. Suppose $M=r^a$, where r is a prime. Suppose f(x) is an irreducible polynomial of degree d over \mathbb{F}_q . Then either of the two cases occur:

Let $N_M(q, d)$ denote the number of monic non-constant M-power polynomials of degree d except x.

$$N_M(q,d) = \frac{1}{d} \sum_{r|d} \mu(r) \frac{\left(M(q^{d/r}-1), (q^d-1)\right)}{\left(M, q^d-1\right)}.$$

Proposition 4.2

Suppose (M,q)=1. Suppose $M=r^a$, where r is a prime. Suppose f(x) is an irreducible polynomial of degree d over \mathbb{F}_q . Then either of the two cases occur:

1. the polynomial $f(x^M)$ has an irreducible factor of degree d, that is, f is an M-power polynomial.

Let $N_M(q, d)$ denote the number of monic non-constant M-power polynomials of degree d except x.

$$N_M(q,d) = \frac{1}{d} \sum_{r|d} \mu(r) \frac{\left(M(q^{d/r}-1), (q^d-1)\right)}{\left(M, q^d-1\right)}.$$

Proposition 4.2

Suppose (M,q)=1. Suppose $M=r^a$, where r is a prime. Suppose f(x) is an irreducible polynomial of degree d over \mathbb{F}_q . Then either of the two cases occur:

- 1. the polynomial $f(x^M)$ has an irreducible factor of degree d, that is, f is an M-power polynomial.
- 2. the polynomial $f(x^M)$ factors as a product of r^{a-i} irreducible polynomials each of degree dr^i for some $1 \le i \le a$.

A Notation - Suppose (M,q)=1 and $M=r^a$, where r is a prime. For $1 \leq i \leq a$, let $\Phi_{M,i}$ be the set of all $f \in \Phi$ such that $f(x^M)$ factors as a product irreducible polynomials each of degree equal to $r^i \deg(f)$. We have,

$$\Phi = \Phi^M \cup \cup_{i=1}^a \Phi_{M,i}$$

Theorem 4.3

Let $M=r^a$, where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

A Notation - Suppose (M,q)=1 and $M=r^a$, where r is a prime. For $1 \leq i \leq a$, let $\Phi_{M,i}$ be the set of all $f \in \Phi$ such that $f(x^M)$ factors as a product irreducible polynomials each of degree equal to $r^i \deg(f)$. We have,

$$\Phi = \Phi^M \cup \cup_{i=1}^a \Phi_{M,i}$$

Theorem 4.3

Let $M=r^a$, where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

1. $f \in \Phi^M$, that is, f is M-power.

A Notation - Suppose (M,q)=1 and $M=r^a$, where r is a prime. For $1 \leq i \leq a$, let $\Phi_{M,i}$ be the set of all $f \in \Phi$ such that $f(x^M)$ factors as a product irreducible polynomials each of degree equal to $r^i \deg(f)$. We have,

$$\Phi = \Phi^M \cup \cup_{i=1}^a \Phi_{M,i}$$

Theorem 4.3

Let $M=r^a$, where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

- 1. $f \in \Phi^M$, that is, f is M-power.
- 2. $f \in \Phi_{M,b}$ for some b, $1 \le b \le a$, and $r^b \mid m_j(\lambda_f)$ for all $j \ge 1$.

Corollary 4.4

Let $M=r^a$ where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$ be semisimple. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)| > 0$, one of the following holds:

Corollary 4.4

Let $M=r^a$ where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$ be semisimple. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

1. $f \in \Phi^M$, that is, f is M-power.

Corollary 4.4

Let $M=r^a$ where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$ be semisimple. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f\in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

- 1. $f \in \Phi^M$, that is, f is M-power.
- 2. $f \in \Phi_{M,b}$ for some b, $1 \le b \le a$, and $r^b \mid |\lambda_f|$.

How does a M^{th} power element in GL(n, q) look like?

Corollary 4.4

Let $M=r^a$ where r is a prime and (q,M)=1. Let $\alpha \in GL(n,q)$ be semisimple. Then, $X^M=\alpha$ has a solution in GL(n,q) if and only if for each $f \in \Phi$ such that $|\lambda_f(\alpha)|>0$, one of the following holds:

- 1. $f \in \Phi^M$, that is, f is M-power.
- 2. $f \in \Phi_{M,b}$ for some b, $1 \le b \le a$, and $r^b \mid |\lambda_f|$.

Proposition 4.5

Suppose $M \geq 2$ be an integer and (q, M) = 1. Let $\alpha \in GL(n, q)$ be a regular (or, regular semisimple) element. Then, α is a M^{th} power iff f is a M-power polynomial, for all f such that $|\lambda_f(\alpha)| > 0$.

Step 1: Suppose $\alpha \in \operatorname{GL}(n,q)$ such that there exists a single polynomial $f \in \Phi$ of degree k, such that $|\lambda_f| > 0$. Let $\lambda_f = (\lambda_1, \lambda_2, \dots, \lambda_r)$. We get a combinatorial parametrization of the matrix α^M .

It turns out that the combinatorial data of α^M consists of a single polynomial f_M of degree $d(\leq k)$, which is the minimal polynomial of the M^{th} power of a root of f, and the partition λ_{f_M} is given by

$$(\underbrace{\lambda_1,\ldots,\lambda_1}_{\frac{k}{d} \text{ times}},\underbrace{\lambda_2,\ldots,\lambda_2}_{\frac{k}{d} \text{ times}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{\frac{k}{d} \text{ times}})$$

Step 1: Suppose $\alpha \in \operatorname{GL}(n,q)$ such that there exists a single polynomial $f \in \Phi$ of degree k, such that $|\lambda_f| > 0$. Let $\lambda_f = (\lambda_1, \lambda_2, \dots, \lambda_r)$. We get a combinatorial parametrization of the matrix α^M .

It turns out that the combinatorial data of α^M consists of a single polynomial f_M of degree $d(\leq k)$, which is the minimal polynomial of the M^{th} power of a root of f, and the partition λ_{f_M} is given by

$$(\underbrace{\lambda_1,\ldots,\lambda_1}_{\frac{k}{d} \text{ times}},\underbrace{\lambda_2,\ldots,\lambda_2}_{\frac{k}{d} \text{ times}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{\frac{k}{d} \text{ times}})$$

Step 1: Suppose $\alpha \in \operatorname{GL}(n,q)$ such that there exists a single polynomial $f \in \Phi$ of degree k, such that $|\lambda_f| > 0$. Let $\lambda_f = (\lambda_1, \lambda_2, \dots, \lambda_r)$. We get a combinatorial parametrization of the matrix α^M .

It turns out that the combinatorial data of α^M consists of a single polynomial f_M of degree $d(\leq k)$, which is the minimal polynomial of the M^{th} power of a root of f, and the partition λ_{f_M} is given by

$$(\underbrace{\lambda_1,\ldots,\lambda_1}_{\frac{k}{d} \text{ times}},\underbrace{\lambda_2,\ldots,\lambda_2}_{\frac{k}{d} \text{ times}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{\frac{k}{d} \text{ times}})$$

Step 2: Extend to this to a general element $\alpha \in GL(n, q)$.

Step 1: Suppose $\alpha \in \operatorname{GL}(n,q)$ such that there exists a single polynomial $f \in \Phi$ of degree k, such that $|\lambda_f| > 0$. Let $\lambda_f = (\lambda_1, \lambda_2, \dots, \lambda_r)$. We get a combinatorial parametrization of the matrix α^M .

It turns out that the combinatorial data of α^M consists of a single polynomial f_M of degree $d(\leq k)$, which is the minimal polynomial of the M^{th} power of a root of f, and the partition λ_{f_M} is given by

$$(\underbrace{\lambda_1,\ldots,\lambda_1}_{\frac{k}{d} \text{ times}},\underbrace{\lambda_2,\ldots,\lambda_2}_{\frac{k}{d} \text{ times}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{\frac{k}{d} \text{ times}})$$

Step 2: Extend to this to a general element $\alpha \in GL(n,q)$. Step 3: Suppose $\beta^M = \alpha$. Thus, the combinatorial data of β^M must match with that of α . Matching these data we obtain the necessary condition. The sufficient condition is obtained by explicitly finding a $\beta \in GL(n,q)$ such that $\beta^M = \alpha$.

Theorem 4.6 Let $M \ge 2$ be an integer and (q, M) = 1. Then,

Theorem 4.6

Let $M \ge 2$ be an integer and (q, M) = 1. Then,

1. The generating function for the proportion of regular semisimple elements which are M^{th} powers in GL(n,q) is

$$1 + \sum_{n=1}^{\infty} \frac{|GL(n,q)_{rs}^{M}|}{|GL(n,q)|} u^{n} = \prod_{d \geq 1} \left(1 + \frac{u^{d}}{q^{d} - 1} \right)^{N_{M}(q,d)}.$$

Theorem 4.6

Let $M \ge 2$ be an integer and (q, M) = 1. Then,

1. The generating function for the proportion of regular semisimple elements which are M^{th} powers in GL(n,q) is

$$1 + \sum_{n=1}^{\infty} \frac{|GL(n,q)_{rs}^{M}|}{|GL(n,q)|} u^{n} = \prod_{d \geq 1} \left(1 + \frac{u^{d}}{q^{d} - 1} \right)^{N_{M}(q,d)}.$$

2. The generating function for the proportion of regular elements which are M^{th} powers is

$$1 + \sum_{n=1}^{\infty} \frac{|\mathit{GL}(n,q)_{rg}^{M}|}{|\mathit{GL}(n,q)|} u^{n} = \prod_{d \geq 1} \left(1 + \sum_{j=1}^{\infty} \frac{u^{jd}}{q^{(j-1)d}(q^{d}-1)} \right)^{N_{M}(q,d)}$$

Theorem 4.7

Let $M \ge 2$ be a prime and (q, M) = 1. The generating function for the proportion of M^{th} power semisimple elements in GL(n, q) is,

$$1 + \sum_{n=1}^{\infty} \frac{|\mathit{GL}(n,q)^{\mathit{M}}_{\mathsf{ss}}|}{|\mathit{GL}(n,q)|} u^n = \prod_{d \geq 1} \left(1 + \sum_{j=1}^{\infty} \frac{u^{jd}}{q^{\frac{j(j-1)d}{2}} \prod\limits_{t=1}^{j} (q^{td} - 1)} \right)^{N_{\mathit{M}}(q,d)}$$

$$imes \prod_{d \geq 1} \left(1 + \sum_{j=1}^{\infty} rac{u^{Mjd}}{q^{rac{Mj(Mj-1)d}{2}} \prod\limits_{t=1}^{Mj} (q^{td}-1)}
ight)^{\widehat{N}(q,d)}$$

where $\widehat{N}(q,d) = N(q,d) - N_M(q,d)$.

Lemma 4.8 (Surjectivity)

Let $M \ge 2$ be a prime. Then the power map ω_M on GL(n,q) is surjective iff (M,q)=1 and n < o(q), where o(q) is the order of q in $(\mathbb{Z}/M\mathbb{Z})^{\times}$.

Lemma 4.8 (Surjectivity)

Let $M \ge 2$ be a prime. Then the power map ω_M on GL(n,q) is surjective iff (M,q)=1 and n < o(q), where o(q) is the order of q in $(\mathbb{Z}/M\mathbb{Z})^{\times}$.

Theorem 4.9

Let M be a prime. Assume (M,q)=1, and let t denote the order of q in $(\mathbb{Z}/M\mathbb{Z})^{\times}$. Then,

$$\frac{|GL(n,q)^M|}{|GL(n,q)|} = \sum_{\substack{\lambda \vdash n \\ \lambda = 1^{m_1} \dots i^{m_i} \dots}} \frac{1}{M^{\pi_t(\lambda)}} \prod_i \frac{1}{m_i! i^{m_i}}$$

if n < Mt, where $\pi_t(\lambda)$ denotes the number of parts of $\lambda \vdash n$ divisible by t.

Example 4.10 Let M = 3. Let, (3, q) = 1.

Example 4.10

Let M = 3. Let, (3, q) = 1.

1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,

Example 4.10

Let M = 3. Let, (3, q) = 1.

1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,

 - $|GL(2,q)|^3 = \frac{1}{9.2} + \frac{1}{3.2} = \frac{2}{9}$

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,
 - $\qquad \qquad \frac{|\mathsf{GL}(1,q)^3|}{|\mathsf{GL}(1,q)|} = \frac{1}{3}$
- 2. Let t = 2, that is, $q \equiv 2 \pmod{3}$. Then,

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,
- 2. Let t = 2, that is, $q \equiv 2 \pmod{3}$. Then,
 - $\blacktriangleright \frac{|\mathsf{GL}(1,q)^3|}{|\mathsf{GL}(1,q)|} = 1$

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,
- 2. Let t = 2, that is, $q \equiv 2 \pmod{3}$. Then,
 - $\blacktriangleright \ \frac{|\mathsf{GL}(1,q)^3|}{|\mathsf{GL}(1,q)|} = 1$
 - $|GL(2,q)^3| = \frac{1}{2} + \frac{1}{3.2} = \frac{2}{3}$

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,
- 2. Let t = 2, that is, $q \equiv 2 \pmod{3}$. Then,
 - $\blacktriangleright \ \frac{|\mathsf{GL}(1,q)^3|}{|\mathsf{GL}(1,q)|} = 1$

Example 4.10

- 1. Let t = 1, that is, $q \equiv 1 \pmod{3}$. Then,
- 2. Let t = 2, that is, $q \equiv 2 \pmod{3}$. Then,
 - $\blacktriangleright \frac{|\mathsf{GL}(1,q)^3|}{|\mathsf{GL}(1,q)|} = 1$

 - $\qquad \qquad \frac{|\mathsf{GL}(4,q)^3|}{|\mathsf{GL}(4,q)|} = \frac{|\mathsf{GL}(5,q)^3|}{|\mathsf{GL}(5,q)|} = \frac{5}{9}$