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Brief overview of the presentation.

I Background and motivation.

I Our models.

I The warp-transpose top with random shuffle.

I Background theory to study the warp-transpose top with random shuffle.

I Spectrum of the transition matrix.

I Order of the mixing time.

I Main theorem on cutoff.
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Brief background.

I The convergence rate related questions for random walks on finite groups
are useful in randomization algorithms.

I This has application in many subjects including mathematics, computer
science, statistical physics and biology.

I This theory took a new direction in 1981, when Diaconis and
Shahshahani introduced the use of non-commutative Fourier analysis
techniques.

I Our models are mainly inspired by the transpose top with random shuffle
studied by Flatto, Odlyzko and Wales in 1985.
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Our models.

I Transpose top-2 with random shuffle: Random walk on the alternating
group An generated by 3-cycles of the form (i, n, n− 1) and (i, n− 1, n).
We have obtained sharp mixing time for this shuffle at

(
n− 3

2
)

logn.

I Flip-transpose top with random shuffle: Random walk on the
hyperoctahedral group Bn generated by the signed permutations of the
form (i, n) and (−i, n) for 1 ≤ i ≤ n. This shuffle exhibits cutoff
phenomenon with cutoff time n logn. Moreover a similar random walk on
the demihyperoctahedral group Dn generated by the signed permutations
of the form (i, n) and (−i, n) for 1 ≤ i < n has a cutoff at

(
n− 1

2
)

logn.
I Warp-transpose top with random shuffle: This is a generalization of the

flip-transpose top with random shuffle, when number of orientations of
each card is more than 2 (also it can depend on n).
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A combinatorial description of G o Sn.

I G: Finite group, Sn: symmetric group on n letters. The complete
monomial group G o Sn is the wreath product of G with Sn. The elements
of G o Sn are (n+ 1)-tuples (g1, g2, . . . , gn;π) where gi ∈ G and π ∈ Sn.
The multiplication in G o Sn is given by

(g1, . . . , gn;π) · (h1, . . . , hn; η) = (g1hπ−1(1), . . . , gnhπ−1(n);πη).

I An(G) denotes the set of all arrangements of n coloured cards in a row
such that the colours of the cards are indexed by the set G.

I Elements of G o Sn can be identified with the elements of An(G) as
follows: (g1, . . . , gn;π) ∈ G o Sn is identified with the arrangement in
An(G) such that the label of the ith card is π(i) and its colour is gπ(i),
for each i ∈ {1, . . . , n}.
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The warp-transpose top with random shuffle on Gn o Sn.

I Let G1 ⊆ G2 ⊆ · · · be a sequence of finite groups such that |G1| > 2.
Then the warp-transpose top with random shuffle on Gn o Sn is a shuffle
on An(Gn).

I For x, y ∈ G, updating the colour x using colour y means the colour x is
being updated to colour x · y.

I Given an arrangement of coloured cards in An(Gn), the shuffling scheme
is the following: Choose a positive integer i uniformly from the set
{1, 2, . . . , n} and choose a colour g uniformly from Gn, independent of
the choice of the integer i.
I If i = n: update the colour of the nth card using colour g.
I If i < n: first transpose the ith and nth cards. Then simultaneously

update the colour of the nth card using colour g and update the colour of
the ith card using colour g−1.
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Example: Typical transition for this shuffle on Z3 o S9
Assume Z3, the additive group of integers modulo 3 consists of the colours
red, green and blue such that red represents the identity element. Then a
typical transition for the warp-transpose top with random shuffle on Z3 o S9 is
given as follows.

123459786

12345 6 789
−−−
−→

−−−−→
−−−−→

123459786

123459786

Recall shuffling scheme: Choose a positive integer i uniformly from the set {1, 2, . . . , n}
and choose a colour g uniformly from Gn, independent of the choice of the integer i.
I If i = n: update the colour of the nth card using colour g.
I If i < n: first transpose the ith and nth cards. Then simultaneously update the

colour of the nth card using colour g and update the colour of the ith card using
colour g−1.
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Aim

Study the mixing time for the warp-transpose
top with random shuffle on Gn o Sn.
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Discrete time Markov chain on finite state space.

I Markov chain: Sequence of random variables {X0, X1, . . . } satisfying

P (Xt+1 = y|Xt = x,Xt−1 = xt−1, . . . , X0 = x0) = P (Xt+1 = y|Xt = x) ,

for all x0, . . . , xt−1, x, y ∈ Ω and P (Xt = x,Xt−1 = xt−1, . . . , X0 = x0) 6= 0.

I Transition matrix: For any t, M = (P (Xt+1 = y|Xt = x))x,y∈Ω .

I If distribution of X0 is Π0 then distribution of Xt is Π0M
t.

I Irreducibility: For any x, y ∈ Ω there exists an integer t such that

P(Xt = y | X0 = x) = M t(x, y) > 0.

I Stationary distribution: Probability distribution Π on Ω satisfying
ΠM = Π.

I Irreducible Markov chain always has a unique stationary distribution.
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Convergence and mixing time.
I Period of state x (∈ Ω) : The greatest common divisor of τ(x),

τ(x) := {t ≥ 1 | P(Xt = x | X0 = x) > 0}.

I Aperiodicity: All states have period 1.
I For an irreducible and aperiodic Markov chain we have, lim

t→∞
Π0M

t = Π.

I Total variation distance: ||µ− ν||TV := sup
A⊂Ω
|µ(A)− ν(A)|.

I Mixing time: The ε-mixing time (0 < ε < 1) is defined as follows,

tmix(ε) := min{t : d(t) < ε}, where d(t) = max
x∈Ω
||M t(x, ·)−Π||TV.

I Cutoff phenomenon: Let {X(n)}n be a sequence of Markov chains and
t
(n)
mix(ε) denote the ε-mixing time for X(n). Then the sequence is said to

satisfy the cutoff phenomenon if

lim
n→∞

t
(n)
mix(ε) =∞ and lim

n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 for all 0 < ε < 1.

10 / 26 Subhajit Ghosh Cutoff for random walks on some finite groups



Convergence and mixing time.
I Period of state x (∈ Ω) : The greatest common divisor of τ(x),

τ(x) := {t ≥ 1 | P(Xt = x | X0 = x) > 0}.

I Aperiodicity: All states have period 1.
I For an irreducible and aperiodic Markov chain we have, lim

t→∞
Π0M

t = Π.

I Total variation distance: ||µ− ν||TV := sup
A⊂Ω
|µ(A)− ν(A)|.

I Mixing time: The ε-mixing time (0 < ε < 1) is defined as follows,

tmix(ε) := min{t : d(t) < ε}, where d(t) = max
x∈Ω
||M t(x, ·)−Π||TV.

I Cutoff phenomenon: Let {X(n)}n be a sequence of Markov chains and
t
(n)
mix(ε) denote the ε-mixing time for X(n). Then the sequence is said to

satisfy the cutoff phenomenon if

lim
n→∞

t
(n)
mix(ε) =∞ and lim

n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 for all 0 < ε < 1.

10 / 26 Subhajit Ghosh Cutoff for random walks on some finite groups



Convergence and mixing time.
I Period of state x (∈ Ω) : The greatest common divisor of τ(x),

τ(x) := {t ≥ 1 | P(Xt = x | X0 = x) > 0}.

I Aperiodicity: All states have period 1.
I For an irreducible and aperiodic Markov chain we have, lim

t→∞
Π0M

t = Π.

I Total variation distance: ||µ− ν||TV := sup
A⊂Ω
|µ(A)− ν(A)|.

I Mixing time: The ε-mixing time (0 < ε < 1) is defined as follows,

tmix(ε) := min{t : d(t) < ε}, where d(t) = max
x∈Ω
||M t(x, ·)−Π||TV.

I Cutoff phenomenon: Let {X(n)}n be a sequence of Markov chains and
t
(n)
mix(ε) denote the ε-mixing time for X(n). Then the sequence is said to

satisfy the cutoff phenomenon if

lim
n→∞

t
(n)
mix(ε) =∞ and lim

n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 for all 0 < ε < 1.

10 / 26 Subhajit Ghosh Cutoff for random walks on some finite groups



Representation theory background
I Linear representation of a finite group: ρ : G Hom.−−−→ GL(V ), V is a

finite-dimensional vector space and GL(V ) is the set of all invertible
linear maps from V to itself. The vector space V is called a G-module in
this case.

I Character: Trace of the matrix ρ(g), denoted by χρ(g).
I Trivial representation: 1 : G −→ C× defined by 1(g) = 1 for all g ∈ G.

I Right regular representation: R : G Hom.−−−→ GL (C[G]) defined by,

g 7→

(∑
h∈G

Chh 7→
∑
h∈G

Chhg

)
, Ch ∈ C, g ∈ G.

I Irreducible representation: There does not exist any non-trivial proper
subspace W of V such that ρ(g) (W ) ⊂W for all g in G. The set of all
irreducible representations of G is denoted by Ĝ.

I Decomposition C[G] into irreducible G-modules:
C[G] ∼= ⊕

σ∈Ĝ
dim(V σ) V σ.
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Non-commutative Fourier analysis techniques.

I Convolution of probability measures on G: (p ∗ q)(x) =
∑
y∈G

p(xy−1)q(y).

I Fourier transformation of p at a representation ρ: p̂(ρ) =
∑
x∈G

p(x)ρ(x).

I Random walk on G driven by p: Markov chain on G with transition
probabilities Mp(x, y) = P (X1 = y|X0 = x) := p(x−1y), x, y ∈ G.

Mp = (Mp(x, y))x,y∈G = (p̂(R))T .

I The distribution after kth transition will be p∗k, more precisely
P (Xk = y|X0 = x) = p∗k(x−1y).

I Irreducible if and only if the support of p generates G. In that case the
stationary distribution is the uniform distribution on G.
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Our model as random walk on Gn o Sn.
I The warp-transpose top with random shuffle on Gn o Sn is the random

walk on Gn o Sn driven by P , defined on Gn o Sn by

P (x) =


1

n|Gn| if x = (e, . . . , e, g; id) for g ∈ Gn,
1

n|Gn| if x = (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n,

0 otherwise.

I The support of P generates Gn o Sn, thus irreducible. It is also aperiodic.

I Stationary distribution is the uniform distribution U on Gn o Sn.

I Transition matrix: P̂ (R).

I Notation: dn(k) := ||P ∗k − U ||TV.

I Eigenvalues of the transition matrix are useful to bound dn(k).
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Definitions of useful combinatorial objects.

I Partition: λ = (λ1, . . . , λ`) ` n if λ1 ≥ · · · ≥ λ` > 0 and |λ| :=
∑̀
i=1

λi = n.

I Young diagrams of shape λ:

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

I Yn(Ĝ): set of all Young G-diagram with n boxes, mappings µ from Ĝ to
the set of all Young diagrams such that

∑
σ∈Ĝ

|µ(σ)| = n.

I tabG(n, µ): set of all standard Young G-tableaux of shape µ.
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I T ∈ tabG(n, µ). If i appear in the Young diagram µ(σ), σ ∈ Ĝ, then we
write rT (i) = σ. Also let bT (i) denote the box in µ(σ), with the number i
resides and c(bT (i)) denote the content of bT (i).

I Take G = Z10 and assume Ẑ10 = {σ1, σ2, . . . , σ10}. Let µ ∈ Y10(Ẑ10) be
such that

µ(σ1) = , µ(σ2) = , µ(σ8) = , µ(σ10) =

and µ(σi) = φ for all i ∈ {3, 4, 5, 6, 7, 9}. Then for the element T of
tabZ10 (10, µ) given by

µ(σ1) 4 6 9
7 10 , µ(σ2) 1

2 , µ(σ8) 3
8 , µ(σ10) 5

and µ(σi) φ for i ∈ {3, 4, 5, 6, 7, 9}, we have the following:

rT (8) = σ8, rT (9) = σ1 and c(bT (8)) = −1, c(bT (9)) = 2.
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Spectrum of the transition matrix.
I Irreducible representations of Gn o Sn are indexed by elements of Yn(Ĝn).

I |Ĝn| = t, Ĝn := {σ1, . . . , σt} and σ1 = 1. For µ ∈ Yn(Ĝn), let
|µ(σi)| = mi and µ(i) = µ(σi). Wσi := irreducible Gn-module
corresponding to σi and di = dim(Wσi) for each 1 ≤ i ≤ t.

Theorem
For each µ ∈ Yn(Ĝn), let P̂ (R)

∣∣
V µ

denote the restriction of P̂ (R) to the
irreducible Gn o Sn-module V µ. Also let χσ denote the character of the
irreducible representation of Gn indexed by σ(∈ Ĝn). Then the eigenvalues of
P̂ (R)

∣∣
V µ

are given by,

1
ndim(W rT (n))

(
c(bT (n)) + 〈χrT (n), χ1〉

)
,

with multiplicity dm1
1 · · · dmtt , for each T ∈ tabGn(n, µ).
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Illustration.
I Consider Gn = Z3 for all n. Focus on the warp-transpose top with

random shuffle on Z3 o S9.

I Let Ẑ3 = {σ1, σ2, σ3}, where σ1 = 1 and µ ∈ Y9(Ẑ3) be such that,

µ(σ1) = , µ(σ2) = and µ(σ3) = .

I The eigenvalue for the standard Young Z3-tableaux of the form

µ(σ1) ∗ ∗ ∗ 9 , µ(σ2) ∗ ∗
∗ ∗ and µ(σ3) ∗

is 1
9×1 (3 + 1) = 4

9 . There are
( 8

3 4 1
)
× 2 = 560 such standard Young

Z3-tableaux. A typical example is given below

µ(σ1) 4 6 7 9 , µ(σ2) 1 5
3 8 and µ(σ3) 2 .

Recall: Let µ ∈ Yn(Ĝn). For each T ∈ tabGn (n, µ), eigenvalues of P̂ (R)
∣∣
V µ

are given by,
1

ndim(W rT (n))

(
c(bT (n)) + 〈χrT (n), χ1〉

)
, with multiplicity dm1

1 · · · dmt
t .
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I The eigenvalue for the standard Young Z3-tableaux of the form

µ(σ1) ∗ ∗ ∗ ∗ , µ(σ2) ∗ ∗
∗ 9 and µ(σ3) ∗

is 1
9×1 (0 + 0) = 0. There are

( 8
4 3 1

)
× 2 = 560 such standard Young

Z3-tableaux. A typical example is given below

µ(σ1) 4 6 7 8 , µ(σ2) 1 5
3 9 and µ(σ3) 2 .

I The eigenvalue for the standard Young Z3-tableaux of the form

µ(σ1) ∗ ∗ ∗ ∗ , µ(σ2) ∗ ∗
∗ ∗ and µ(σ3) 9

is 1
9×1 (0 + 0) = 0. There are

(8
4
)
× 2 = 140 such standard Young

Z3-tableaux. A typical example is given below

µ(σ1) 2 4 6 7 , µ(σ2) 1 5
3 8 and µ(σ3) 9 .

Recall: Let µ ∈ Yn(Ĝn). For each T ∈ tabGn (n, µ), eigenvalues of P̂ (R)
∣∣
V µ

are given by,
1

ndim(W rT (n))

(
c(bT (n)) + 〈χrT (n), χ1〉

)
, with multiplicity dm1

1 · · · dmt
t .
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Proof idea of the theorem on spectrum.
Proof uses the result of Mishra and Srinivasan (2016) on Vershik-Okounkov
approach to the representation theory of Gn o Sn.

I A multiplicity free chain of finite groups G1 ⊆ G2 ⊆ · · · ⊆ Gn. Irreducible
Gn-modules V has a canonical decomposition into irreducible G1-modules.
This decomposition is known as Gelfand-Tsetlin decomposition and the
irreducible G1-modules are known as the Gelfand-Tsetlin subspaces of V .

I GTn is a maximal commuting subalgebra of C[Gn] generated by
Z1,Z2, . . . ,Zn, where Zi denotes the center of C[Gi]. GTn is known as
the Gelfand-Tsetlin subalgebra of C[Gn]. Elements of GTn act by scalars
on the Gelfand-Tsetlin subspaces of all irreducible representations of Gn.

I The chain {id} = S1 ⊆ · · · ⊆ Sn is multiplicity free. The Gelfand-Tsetlin
subalgebra for this chain is generated by the Young-Jucys-Murphy
elements Y1, . . . , Yn. The Young-Jucys-Murphy elements are defined as
follows: Y1 = 0 and Yi = (1, i) + · · ·+ (i− 1, i) ∈ C[Si] for all 2 ≤ i ≤ n.
(Work of Vershik and Okounkov (2005)).
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Upper bound for ||P ∗k − U ||TV.
Theorem
For the random walk on Gn o Sn driven by P , we have the following:

1. Let C > 1. Then for k ≥ n logn+ Cn log(|Gn| − 1), we have

||P ∗k − U ||TV <

√
1 + 2e

2 2−C + o(1).

2. Let a > 1
2 and k = n logn+ 1

2n log(|Gn| − 1) + an log(|Ĝn| − 1). Then

||P ∗k − U ||TV <

√
1 + 2e

2 2−a + o(1).

Key inequality: For all k ≥ n logn,

4 ||P ∗k − U ||2TV <

(
en

2e−
2k
n − 1

)
+ e

(
en

2(|Gn|−1)e−
2k
n − 1

)
+(|Ĝn| − 1)

(
e−

2k
n en

2e−
2k
n + e

n2

(
en

2(|Gn|−1)e−
2k
n − 1

))
.

Recall: t(n)
mix(ε) := min{k : ||P ∗k − U ||TV < ε}, 0 < ε < 1.
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Lower bound for ||P ∗k − U ||TV

Theorem
Let c� 0. Then for k = n logn+ cn, we have

||P ∗k − U ||TV > 1−
2
(

2 + 1
|Gn|

)(
e−c + 1

|Gn|

)
+ o(1)(1 + e−c + e−2c)(

1
|Gn| + (1 + o(1))e−c

)2 .

Sketch of proof:
I Let V = C[Gn × {1, . . . , n}] be the complex vector space of all formal

linear combinations of elements of Gn × {1, . . . , n}.
I Define the representation R : Gn o Sn −→ GL(V ) on the basis elements of
V by

R(g1, . . . , gn;π) ((h, i)) =
(
gπ(i)h, π(i)

)
.

I The random variable X counts the number of fixed points of the action
of R i.e. X is the character χR of R.
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Lower bound for ||P ∗k −U ||TV (proof sketch continued).

Lemma
We have EU (X) = 1 and for k > 1, the following hold:

Ek(X) ≈ 1 + ((n− 1)|Gn| − 1) e− kn ,

Vark(X) ≈ |Gn|+
(
(n− 1)|Gn|2 − |Gn|

)
e−

k
n − (n− 1)|Gn|2e−

2k
n

+ cn

(
1 + (|Gn| − 1)2

)
,

where cn → 0 as n→∞.

I Using EU (X) = 1, Chebychev’s and Markov’s inequality inequality, we
have

||P ∗k − U ||TV ≥ 1− 4 Vark(X)
(Ek(X))2 −

2
Ek(X) .

I Now use the values of Ek(X) and Vark(X).
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Cutoff.
Theorem
The warp-transpose top with random shuffle on Gn o Sn exhibits cutoff
phenomenon with cutoff time n logn if |Gn| = o(nδ) for all δ > 0.

Sketch of proof: (The condition implies cutoff)
I |Gn| = o(nδ) for all δ > 0 =⇒ lim

n→∞
log(|Gn|−1)

logn = 0. Let ε ∈ (0, 1).
I For appropriate choice of a positive integer N0, C > 1 and c� 0, we have

n logn+ cn ≤ t(n)
mix(ε) ≤ n logn+ Cn log(|Gn| − 1), for all n ≥ N0

=⇒ lim
n→∞

t
(n)
mix(ε)
n logn = 1 =⇒ Cutoff at n logn.

Recall: t(n)
mix(ε) := min{k : ||P ∗k − U ||TV < ε}, 0 < ε < 1.

I ||P ∗k − U ||TV <
√

1+2e
2 2−C + o(1) for k ≥ n logn+ Cn log(|Gn| − 1), C > 1.

I ||P ∗k−U ||TV > 1−
2
(

2ec+ ec

|Gn|

)(
1+ ec

|Gn|

)
+o(1)(1+ec+e2c)(

ec

|Gn|
+(1+o(1))

)2 for k = n logn+cn, c� 0.
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