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Word maps

I G a finite group.

I A word w is an element of the free group Fd in d variables
X1, . . . ,Xd.

I For example, w = Xj1
i1 · · ·X

jk
ik .

I Word map
w : Gd → G

given by
(g1, . . . , gd) 7→ w(g1, . . . , gd).

I w is said to be non-trivial if w(G) 6= {1}.



Broad questions

I How big is the image w(G) := w(Gd) ⊂ G?

I In particular, is w surjective?

I What’s the width of < w(G) > with respect to w(G)?

I For example, determine the diameter of the Cayley graph
of G with respect to the set w(G) when w is surjective?

I When G is finite, estimate |w(G)|
|G| ?



Some classic examples

1. Commutator map: When w(X1,X2) = X1X2X−1
1 X−1

2 the
map

w : G× G→ G

given by
(g, h) 7→ ghg−1h−1

is called a commutator map.

2. Power map: When w(X) = XM the map w : G→ G given by

g 7→ gM

is called a power map.
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Motivation



Ore’s conjecture

Ore, in 1951, conjectured that the commutator map is
surjective for all non-Abelian finite simple groups.

Now this conjecture is proved in affirmative.

I Ore himself proved it for the alternating groups in 1951.
I Thompson for SLn in 1961.
I Ellers and Gordeev proved for all finite simple groups of Lie

type (except some small size) in 1998.
I Liebeck, O’Brien, Shalev and Tiep completed the proof in

2010.
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Waring-like problem

The Waring problem in number theory:

Given k > 1, does there exist g(k) such that every natural
number is a sum of g(k) many k-th powers of natural numbers.

That is, find g(k) (smallest) such that X2
1 + · · ·+ X2

g(k) is
surjective on N.



Waring-like problem

The Waring problem in number theory:

For example, the four square theorem says g(2) = 4, i.e, every
positive integer is a sum of four squares.

g(3) = 9, g(4) = 19, g(5) = 37, g(6) = 73 etc.

This has some well known contribution of R. Balasubramanian.

Conjecture: g(k) = 2k + b(3/2)kc − 2.



Waring-like problem

Waring-like problem for non-Abelian finite simple (and
quasi-simple) groups:

Given n, does there exist f (n) such that, the word map

Xn
1 · · ·Xn

f (n)

is surjective on all non-Abelian finite simple (quasi-simple)
groups?

In other words, consider the set S = {gn | g ∈ G} where G is a
FSG. Does S generate G and determine the width of G with
respect to the set S?



Borel dominance theorem (Borel 1983)

G a simple algebraic group and w ∈ Fd, a non-trivial word.

Then, the word map defined by w is a dominant morphism.

Thus, for simple algebraic groups, f (k) = 2.

♣ P. Chatterjee and Steinberg have studied surjectivity of
power map for algebraic groups.



Work done on Waring-like problem

Notation: G a non-abelian finite simple group (FSG), w a
non-trivial word.

I Martinez and Zelmanov (1996), Saxl and Wilson (1997)
proved the existence of f (k).

I Liebeck & Shalev (Annals of Math 2001) : there exists c
such that w(G)c = G.

I Shalev (Annals of Math 2009) : there exists N such that
when |G| > N, we have w(G)3 = G.

I Larsen, Shalev & Tiep (Annals of Math 2011) : there exists
N such that when |G| > N, we have w(G)2 = G.
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Work done on Waring-like problem

Mainly from the work of Larsen, Shalev and Tiep, it follows that
for large enough G, we have

I f (w(G)) = 2 when G is finite simple and

I f (w(G)) = 3 when G is finite quasi-simple.

♣ See the survey article by Shalev titled “Some results and
problems in the theory of word maps”.



Surjectivity of certain maps on FSG

In a series of four papers by Liebeck, O’Brien, Shalev and Tiep
and another paper together with Guralnick the following results
are proved:

I Every element of every FSG is a product of two squares.

I Every element of every FSG is a product of two nth powers
where n = pk or paqb. It is not true when n is a product of
three prime powers.



Lie groups and Chevalley groups

Hui, Larsen and Shalev, in 2015, proved similar results for
certain Lie groups and Chevalley groups.

I There exists N such that if G is a classical connected real
compact Lie group of rank at least N then w(G)2 = G.

I Over R or Qp, for a simple Chevalley group G over F, we
have w(G)3 = G.



Image Size



Estimating image size

Larsen and Shalev, 2009 proved the following:

For each non-trivial word w and ε > 0, there exists N = N(w, ε)
such that if n > N then

|w(Altn)|
|Altn|

≥ 1

n
29
9 +ε

.



Estimating image size

In the same paper, Larsen and Shalev proved the following:

For all non-trivial w there exists N = N(w) such that if G is a
finite simple group of Lie type of rank n which is not of type An

or 2An and |G| ≥ N then

|w(G)|
|G|

≥ c
n

where c is an absolute constant depending on w.



Shalev’s conjecture

Shalev conjectured that the bound, in the last inequality, should
hold for the groups of type An and 2An too.



Theorem (Galt, Kulshrestha, Singh, Vdovin:
Journal of Group Theory 2019)

We proved the Shalev’s conjecture for power maps.

Let w = XM be the power word on G = PSLn(q) or PSUn(q)
where q is odd. Then, there exists N = N(M) such that if
|G| > N we have,

|w(G)|
|G|

≥ ln(n)

2nM2 .



Groups of type A1

It is known that every element of SL2(Fq) is a product of
two-squares. (In fact, results for more general words are
known.)

Theorem (Kulshrestha, Singh: Proc. Indian Acad. Sci.
Math. Sci: 2020)
Suppose characteristic of k is not 2.

1. Every element of SL2(k) is a product of 2 squares.

2. In addition, if 2 is a square in k, then every element of
SL1(Q) is a product of two squares if and only if −1 is a
square in SL1(Q), where Q is a quaternion division algebra.



Lower triangular matrix groups

Notation:
I q power of a prime p,
I T(n, q) lower triangular matrix group,
I U(n, q) uni-triangular subgroup and
I Up−1(n, q) = {(aij) ∈ U(n, q) | aij = 0, ∀ i− j ≤ p− 1}.

Then,
1. U(n, q)p ⊂ Up−1(n, q).

2. U(n, q)p = 1 if and only if n ≤ p, and U(n, q)p = Up−1(n, q) if
and only if n = p + 1, p + 2.



Theorem (Dolfi, Singh, Yadav: Journal of Algebra
and its application, 2020)

1. Let n ≥ p + 3. Then, the set U(n, q)p is a proper generating
subset of Up−1(n, q) and when q ≥ n− p− 1,

|U(n, q)p| > 1
3
|Up−1(n, q)|.

2. Suppose q > n− p− 1. Then, for the group T = T(n, q) we
have,

|Tp|
|T|
≥ 2n−2

9(q− 1)n−2q(p−1)(n−p)
.

In fact, every element of Up−1(n, q) is a product of two elements
from U(n, q)p.



Generating functions for the powers in GL(n, q)
(Kundu and Singh, 2020)

For the group GL(n, q) and M ≥ 2, we have computed the
generating function for the number of semisimple, regular and
regular semisimple classes and elements which are Mth powers
in GL(n, q).

Polya’s cycle index for symmetric groups is generalised by
Kung and Stong to cycle index for GL(n, q) and, by Fulman for
other classical groups. Our results generalise the known results
for M = 1 due to Wall, Macdonald, Fulman, Miller etc.



Asymptotic Bounds



Finite reductive groups

I Let Fq be a finite field and k = F̄q.

I Let G be a connected reductive group over k with Frobenius
map F, so that G(Fq) = GF is a finite group of Lie type.

I This allows us to consider G(Fq) ⊂ G.

I We consider the power map ω : G→ G given by x 7→ xM.
Clearly, this map is defined over Fq.

I We consider the image of the set G(Fq) under this map,
denoted as G(Fq)M.
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Examples to keep in mind

I Consider the group GL(n) over k.

I Define F : GL(n)→ GL(n) by (ai,j) 7→ (aq
i,j). This is a

Frobenius map and GL(n)F = GL(n)(Fq) = GL(n, q).

I Consider the map F on GL(n) given by (ai,j) 7→ t(aq
i,j)
−1.

The fixed point set is the unitary group
GL(n)F = U(n, q) ⊂ GL(n, q2).



Notation

Denote the set of M-power regular semisimple elements as

G(Fq)M
rs := G(Fq)M ∩ G(Fq)rs,

the set of M-power semisimple elements as

G(Fq)M
ss := G(Fq)M ∩ G(Fq)ss,

and M-power regular elements as

G(Fq)M
rg := G(Fq)M ∩ G(Fq)rg.



Question

We are interested in studying the asymptotic values of the
following as q→∞:

|G(Fq)M|
|G(Fq)|

,
|G(Fq)M

rs |
|G(Fq)|

,
|G(Fq)M

ss |
|G(Fq)|

,
|G(Fq)M

rg|
|G(Fq)|

.



Theorem (Kulshrestha, Kundu, Singh: 2020)

I G a connected reductive group defined over Fq

I M ≥ 2 an integer

I Then,

lim
q→∞

|G(Fq)M|
|G(Fq)|

= lim
q→∞

|G(Fq)M
rs |

|G(Fq)|
= lim

q→∞

|G(Fq)M
ss |

|G(Fq)|

= lim
q→∞

|G(Fq)M
rg|

|G(Fq)|
=

∑
T=Td1,··· ,ds

1
|WT |(M, d1) · · · (M, ds)

I where the sum varies over non-conjugate maximal tori T in
G(Fq),

I T = Td1,··· ,ds
∼= Cd1 × · · · × Cds reflects the cyclic structure of

T, and the group WT = NG(Fq)(T)/T.
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Example GL(2, q)

I There are two maximal tori up to conjugacy.

I The split maximal torus T1 ∼= Cq−1 × Cq−1 with |WT1 | = 2,
and the anisotropic torus T2 ∼= Cq2−1 with |WT2 | = 2.

I Thus, the probability of finding a Mth power in GL(2, q) is

=
1

2.(M, q− 1)(M, q− 1)
+

1
2.(M, q2 − 1)

.



Example GL(2, q)

I When M = 2 the probability is 1
2.(2,q−1)2 + 1

2.(2,q2−1)
= 3

8 if q
is odd and 1 if q is even.

I When M = 3, the probability would be:
1 if q = 0 (mod 3)
2
9 if q = 1 (mod 3)
2
3 if q = 2 (mod 3).



Example GL(2, q) and M = 2

From direct computation following the work in Kundu and Singh
(Generating functions for the powers in GL(n, q): 2020), we
have the following:

q |GL(2, q)2| lim
q→∞

|GL(2, q)2|
|GL(2, q)|

odd 3
8 q4 − 5

8 q3 + 1
8 q2 + 5

8 q− 1
2

3
8

even q4 − 2q3 + 2q− 1 1

q |GL(2, q)2
rg| |GL(2, q)2

ss| |GL(2, q)2
rs|

odd 3
8 q4 − 5

8 q3+ 3
8 q4 − 9

8 q3+ 3
8 q4 − 9

8 q3+
1
8 q2 − 3

8 q− 1
2

5
8 q2 + 9

8 q− 1 5
8 q2 + 1

8 q
even q4 − 2q3 + q q4 − 2q3 + 2q− 1 q4 − 2q3 + q



GL(2, q) and M = 3

q |GL(2, q)3| lim
q→∞

|GL(2, q)3|
|GL(2, q)|

0 q4 − 2q3 + 2q− 1 1
1 2

9(q4 − q3 − q2 + q) 2
9

2 2
3(q4 − q3 − q2 + q) 2

3

q |GL(2, q)3
rg| |GL(2, q)3

ss| |GL(2, q)3
rs|

0 q4 − 2q3 + q q4 − 2q3 + 2q− 1 q4 − 2q3 + q
1 2

9 q4 − 2
9 q3− 2

9 q4 − 5
9 q3+ 2

9 q4 − 5
9 q3+

2
9 q2 − 1

9 q + 1
3

1
9 q2 + 5

9 q− 1
3

1
9 q2 + 2

9
2 2

3 q4 − 2
3 q3− 2

3 q4 − 5
3 q3+ 2

3 q4 − 5
3 q3+

2
3 q2 − 1

3 q + 1 1
3 q2 + 5

3 q− 1 1
3 q2 + 2

3 q.



Some ideas involved in the proof of
Main Theorem



Main Theorem (Kulshrestha, Kundu, Singh: 2020)

I G/Fq connected reductive; M ≥ 2 be an integer.

Then,

lim
q→∞

|G(Fq)M|
|G(Fq)|

= lim
q→∞

|G(Fq)M
rs |

|G(Fq)|
= lim

q→∞

|G(Fq)M
ss |

|G(Fq)|
= lim

q→∞

|G(Fq)M
rg|

|G(Fq)|

=
∑

T=Td1,··· ,ds

1
|WT |(M, d1) · · · (M, ds)

I sum varies over non-conjugate maximal tori T in G(Fq),
I T = Td1,··· ,ds

∼= Cd1 × · · · × Cds cyclic structure of T,
I the group WT = NG(Fq)(T)/T.



The key Lemma

I The key step to prove the Main Theorem is,

|G(Fq)M
rs |

|G(Fq)|
=

∑
T=Td1,··· ,ds

1
|WT |(M, d1) · · · (M, ds)

+O(q−1)

I where the sum varies over non-conjugate maximal tori T in
G(Fq),

I T = Td1,··· ,ds
∼= Cd1 × · · · × Cds reflects the cyclic structure,

and the group WT = NG(Fq)(T)/T.



Regular semisimple elements

Regular semisimple elements ≡ connected component of
centralizers of these elements is a maximal torus.

Regular semisimple elements are dense in G(Fq), thus we work
with them. In fact,

|G(Fq)rs| = |G(Fq)|(1 +O(q−1)).

For example, when G = GL(n, k) these are the ones which are
conjugate to a diagonal matrix with distinct entries over
algebraic closure.



Where do we find rs?

A semisimple element belongs to a maximal torus.

A regular semisimple element belongs to a unique maximal
torus.

For example, maximal tori, up to conjugacy, in GL(n, q) are in
one-one correspondence with partitions of n.

When n = 3, (1, 1, 1)↔ F∗q × F∗q × F∗q (the split torus),
(1, 2)↔ F∗q × F∗q2 and (3)↔ F∗q3 (anisotropic torus).



Estimate over a maximal torus

I Let T = T̄(Fq) be a maximal torus in G(Fq) where T̄ is a
F-stable maximal torus of G.

I |T ∩ G(Fq)rs| = qr +O(qr−1).

I |TM ∩G(Fq)rs| = |TM|+O(qr−1) = 1
(M,d1)···(M,ds)

|T|+O(qr−1).

I For the last one, T(Fq) ∼= Cd1 × · · · × Cds is Abelian and the
power map is a group homomorpism.



Final estimate

Hence,

|G(Fq)M
rs |

|G(Fq)|

=
1

|G(Fq)|
∑

T̄∈τ,T=T̄(Fq)

|TM ∩ G(Fq)rs|

=
1

|G(Fq)|
∑

T̄∈τ,T=T̄(Fq)

(
1

(M, d1) · · · (M, ds)
|T|+O(qr−1)

)

Now, we take T = Td1,...,ds up to conjugacy.



Final estimate

=
1

|G(Fq)|
.
|G(Fq)|
|NG(Fq)(T)|

 ∑
T=Td1,...,ds

1
(M, d1) · · · (M, ds)

|T|+O(qr−1)


=

 ∑
T=Td1,...,ds

1
(M, d1) · · · (M, ds)

1
|WT |

+
1

|WT ||T|
O(qr−1)

=
∑

T=Td1,...,ds

1
(M, d1) · · · (M, ds)

1
|WT |

+O(q−1).



Thank You.

email : anupamk18@gmail.com

https://sites.google.com/site/anupamk182/


