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Background and notation

Symmetric functions in m variables are characters of polynomial
representations of GLm.

Symmetric functions of degree n, via the Frobenius characteristic
map, are in correspondence with the representation ring of the
symmetric group Sn.

Plethysm of symmetric functions f [g ] corresponds to composition
of GLn characters.

For the symmetric group it corresponds to forming representations
of wreath products Sm[Sn], and inducing up to Smn.
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Partitions of n and symmetric functions

λ = (λ1 ≥ λ2 ≥ . . . λk ≥ 1) such that
∑

i λi = n is an integer
partition of n; `(λ) is the number of parts k of λ.

pr =
∑

i xi
r is the rth power-sum symmetric function;

pλ = pλ1pλ2 . . . is the power-sum symmetric function indexed
by the partition λ;

sλ denotes the Schur function indexed by the partition λ;

Up to a scalar multiple, pλ is the Frobenius characteristic of
the class function that is 1 on the conjugacy class indexed by
λ and zero elsewhere;

sλ is the Frobenius characteristic of the Sn-irreducible indexed
by λ.

A symmetric function f of homogeneous degree n is Schur
positive if it is a nonnegative integer combination of Schur
functions, i.e. if it corresponds to a true Sn-module.
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Symmetric and Exterior Powers

The homogeneous symmetric function hn of degree n is the
Frobenius characteristic of the trivial representation of Sn.
It is also the character of GL(V ) acting on the nth symmetric
power Symn(V ).

The elementary symmetric function en of degree n is the
Frobenius characteristic of the sign representation of Sn.
It is also the character of GL(V ) acting on the nth exterior
power ∧n(V ).
The involution ω in the ring of symmetric functions is defined
by ω(hn) = en.

pn1 is the Frobenius characteristic of the regular representation
of Sn.
It is also the character of GL(V ) acting on the nth tensor
power V⊗n.
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Plethysm and Schur-Weyl duality

Define H =
∑

n≥0 hn and E =
∑

n≥0 en.

If F =
∑

i≥1 fi is the Gl(V )-character on W = ⊕iWi , then:
H[F ] is the Gl(V )-character of the symmetric algebra Sym(W ).

E [F ] is the Gl(V )-character of the exterior algebra
∧
W .

If λ is the partition with mi parts equal to i , then:

Hλ[F ] is the character of the piece ⊗iSym
mi (Wi ) of the symmetric

algebra Sym(W ) .

Eλ[F ] is the character of the piece ⊗i
∧mi (Wi ) of the exterior

algebra
∧
W .

(1− p1)−1 =
∑

n≥0 p
n
1 is the Gl(V)-character on the full tensor

algebra T (V ).
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Plethysm and the symmetric group

If F =
∑

j≥1 fj where each fj is the Frobenius characteristic ch of
an Sj -module Wj , and λ is the partition of n with mi parts equal
to i , then:

Hλ[F ] = ch (
⊗
i

1Smi
[Wi ])

xSn =
∏
i

hmi [fi ]

Eλ[F ] = ch (
⊗
i

sgnSmi
[Wi ])

xSn =
∏
i

emi [fi ].

The modules are induced from the subgroup
∏

i Smi [Si ], the
normaliser in Sn of the direct product of mi copies of Si , i ≥ 1.
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The regular representation of a finite group G

RegG := 1
xG

e
=

∑
χ irreducible repn of G

(dimχ)χ.

For the symmetric group Sn :

Theorem (Reg0)

RegSn =
∑
λ`n

f λχλ,

with Frobenius characteristic

chRegSn :=
∑
λ`n

f λsλ,

where λ is an integer partition of n,
f λ = |{standard Young tableaux of shape λ}|, and
sλ is the Schur function indexed by λ, so sλ = chχλ.
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The regular representation of Sn — (I)

Let Cn be the cyclic subroup of Sn generated by the long cycle
σ = (1 2 . . . n), let ωn be a primitive nth root of unity.
For 1 ≤ k ≤ n, σ 7→ ωk

n yields a representation of Cn, and these
are all the distinct irreducibles, so

RegCn =
n∑

k=1

(ωk
n ).

This gives a second decomposition of the regular representation of
Sn :
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The regular representation of Sn — (I) (continued)

Theorem (Reg1)

RegSn =
n∑

k=1

(ωk
n )
xSn
Cn

Proof: Induce the decomposition of the regular representation of
Cn up to Sn. (Or take tensor products over CCn with CSn.)
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The summands in Reg1

Definition

Lien := ωn

xSn
Cn
.

Definition

Conjn := ωn
n

xSn
Cn

= 1
xSn
Cn
.

Conjn is the permutation representation of Sn by conjugation on
the class of n-cycles, since the stabiliser of an n-cycle is the cyclic
group Cn.
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Ramanujan sums

µ(n), φ(n) are respectively the number-theoretic Möbius and
totient functions.

Let `
(k)
n := chωk

n

xSn
Cn
, 1 ≤ k ≤ n.

Theorem (Foulkes, 1972)

`
(k)
n =

1

n

∑
d |n

φ(d)
µ( d

(d ,k))

φ( d
(d ,k))

p
n
d
d .

The quantity

φ(d)
µ( d

(d ,k))

φ( d
(d ,k))

is a Ramanujan sum; it equals the sum of the kth powers of all
primitive dth roots of unity.
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Two special cases: Lien and Conjn

Note `
(1)
n = ch Lien, `

(n)
n = chConjn. Hence

ch Lien =
1

n

∑
d |n

µ(d)p
n
d
d .

chConjn =
1

n

∑
d |n

φ(d)p
n
d
d .
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Ring of coinvariants I

Let R := C[x1, . . . , xn]/In where In is the ideal generated by the
non-constant symmetric polynomials.
R is the ring of coinvariants for Sn, carrying a representation of Sn:

Theorem (Chevalley 1955)

The ring of coinvariants R affords the regular representation of Sn.
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Ring of coinvariants II

The ring R is graded (by degree):

R =
⊕
i≥0
Ri .

Theorem (Kráskiewicz & Weyman (1987/2001))

For each k = 1, . . . , n,⊕
i≡k mod nRi is isomorphic to ωk

n

xSn
Cn
.

Decomposition into irreducibles?
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A famous theorem in Algebraic Combinatorics

Theorem (Stanley, see EC2 Ex. 7.88, Kráskiewicz & Weyman
(1987/2001))

The multiplicity of the irreducible χλ in ωk
n

xSn
Cn

is the number of
standard Young tableaux t of shape λ whose major index is
congruent to k mod n.

More specifically:

Theorem (Lusztig; Stanley 1979)

The multiplicity of the irreducible χλ in the ith graded piece of the
coinvariant ring Ri is the number of standard Young tableaux t of
shape λ whose major index equals i .
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Plethysm with Lie (I)

Let Lie =
∑

n≥1 Lien =
∑

n≥1 chωn

xSn
Cn
. Then

Theorem (Thrall 1942)

H[Lie] = (1− p1)−1.

Proof.

Use the identity H = exp(
∑

i≥1
pi
i ) and the following facts:

1 pi [f ] = f [pi ]; p1[f ] = f [p1] = f ; c[f ] = c for constants c.

2 pi [pj ] = pij = pj [pi ].

3 (f + g)[r ] = f [r ] + g [r ];

4 (fg)[r ] = f [r ] g [r ]; (f /g)[r ] = f [r ]/g [r ].
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The regular representation of Sn — (II)

The plethystic identity

H[Lie] = (1− p1)−1

is equivalent to

Theorem (Reg2 : Thrall 1942)

chRegSn =
∑
λ`n

Hλ[Lie] =
∑
λ`n

hm1 [Lie1]hm2 [Lie2] . . . ,

where λ has mi parts equal to i .
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Plethystic Inverses

Definition

We say symmetric functions f and g are plethystic inverses if

f [g ] = g [f ] = p1.

Associativity of plethysm implies that f [g ] = p1 ⇐⇒ g [f ] = p1.

Theorem

If f is a symmetric function with no constant term and nonzero
coefficient for p1, then f has a plethystic inverse.

Proof: Let f = p1 +
∑

n≥2 fn where fn is of homogeneous degree
n. Then

p1 = f [g ] = g + (
∑
n≥2

fn[g ]).

Isolate by degree and recursively compute the terms of g .
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Examples

1 (p1 − 1) and (p1 + 1) are inverses.

2
p1

1+p1
and p1

1−p1 are inverses.

3
∑

n≥1 pn and
∑

n≥1 µ(n)pn are inverses.
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The plethystic inverse of H − 1 =
∑

n≥1 hn

Theorem (INV1: Cadogan 1971)∑
n≥1

hn[
∑
n≥1

(−1)n−1ω(Lien)] = p1.
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Plethystic Identities: A meta theorem

Fix ψ : N+ → R.

Let fn := 1
n

∑
d |n ψ(d)p

n
d
d , and fn(t) := 1

n

∑
d |n ψ(d)t

n
d .

Let F :=
∑

n≥1 fn, F alt :=
∑

n≥1(−1)n−1fn (symmetric functions).

Theorem (S 2017)

H[F ] =
∏
m≥1

(1− pm)−fm(1) (1)

⇐⇒ E [F ] =
∏
m≥1

(1− pm)fm(−1) (2)

⇐⇒ H[ω(F )alt ] =
∏
m≥1

(1 + pm)fm(1) (3)

⇐⇒ E [ω(F )alt ] =
∏
m≥1

(1 + pm)−fm(−1) (4)
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Specialisations of ψ(d) — I

Take ψ(d) = µ(d) to obtain, for F = Lie, since fm(1) = δm,1,

H[Lie] = (1− p1)−1 ⇐⇒ H[ω(Lie)alt ] = 1 + p1.

So Thrall’s theorem is equivalent to Cadogan’s computation of the
plethystic inverse of

∑
n≥1 hn, and also to:

Theorem (INV2 : Plethystic inverse of Lie)

(Orlik-Solomon, Lehrer-Solomon 1986 )∑
n≥1

(−1)n−1en[Lie] = p1
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Specialisations of ψ(d) — II

Recall E =
∑

n≥0 en.

Definition (S 2018)

Let kn be the 2-valuation of the positive integer n. Define

Lie
(2)
n := ωkn

n

xSn
Cn
.

Notice: Lie
(2)
n =

{
Lien n odd,

Conjn n a power of 2.
.

Meta theorem + the corresponding specialisation of ψ(d) gives

Theorem (Reg3: S 2018)

E [
∑
n≥1

Lie
(2)
n ] = (1− p1)−1.

chRegSn =
∑
λ`n

Eλ[Lie
(2)
n ] =

∑
λ`n

em1 [Lie
(2)
1 ]em2 [Lie

(2)
2 ] . . .
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The inverses of E − 1 =
∑

n≥1 en and
∑

n≥1 Lie
(2)
n

The meta theorem implies

Corollary (S 2018)

(INV 3)
∑
n≥1

en[
∑
n≥1

(−1)n−1ω(Lie
(2)
n )] = p1.

and

(INV 4)
∑
n≥1

(−1)n−1hn[
∑
n≥1

Lie
(2)
n ] = p1.

Question: Is there a more conceptual explanation for (Reg3),
(Inv3), (Inv4)? An acyclic complex?
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Lie versus Lie
(2)
n

Theorem (S 2018)

Lien = Lie
(2)
n − Lie

(2)
n
2

[p2].

Proof: First note that H[p1 − p2] = E .
Also, (p1 − p2) and

∑
k≥0 p2k are plethystic inverses.

(1− p1)−1 = H[Lie] = H[(p1 − p2)[
∑
k≥0

p2k ]] [Lie]

= (H[p1 − p2])[
∑
k≥0

p2k [Lie]] = E [
∑
k≥0

p2k [Lie]]

=⇒
∑
n≥1

Lie
(2)
n =

∑
k≥0

p2k [Lie].
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Specialisations of ψ(d) — III

Recall that `
(k)
n = chωk

n

xSn
Cn
.

Theorem (S 2017)

Fix k ≥ 1. Then

H[
∑
m≥1

`
(k)
n ] = 1 +

∑
λ

λi |k

pλ.

This generalises Thrall’s Theorem.
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Specialisations of ψ(d) — III continued

From this one can deduce

Corollary (S 2018)

`
(k)
n =

∑
m| gcd(n,k)

Lie n
m

[pm],

confirming that `
(k)
n and the representation ωk

n

xSn
Cn

depend only on
gcd(n, k).

27 / 49



The plethystic inverse of the odd Lie representations

Theorem (INV5: S 2020; conjectured by Richard Stanley)

The plethystic inverse of
∑

n≥1 Lie2n−1 is

e1 + e3 + . . .

1 + e2 + e4 + . . .
.

Theorem (S 2020)

Let δn = (n − 1, n − 2, . . . , 1), n ≥ 2. (Set δ1 = ∅.) Then

e1 + e3 + . . .

1 + e2 + e4 + . . .
= s(1) +

∑
n≥3

(−1)nsδn/δn−2

= tanh(
∑
i≥1

arctanh xi ).
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The plethystic inverse of the alternating odd Lie’s

Theorem (INV6: S 2020)

The plethystic inverse of
∑

n≥0(−1)nLie2n+1 is

e1 − e3 + e5 − . . .
1− e2 + e4 − . . .

.

Theorem (Carlitz 1973)

Let δn = (n − 1, n − 2, . . . , 1), n ≥ 2. (Set δ1 = ∅.) Then

e1 − e3 + e5 − . . .
1− e2 + e4 − . . .

= s(1) +
∑
n≥3

sδn/δn−2

= tan(
∑
i≥1

arctan xi ).
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The regular representation — IV

Define Hkn to be the Frobenius characteristic of the
(multiplicity-free) sum of all irreducibles indexed by hooks
(n − r , 1r ), r = 0, 1, . . . , n − 1; Hk1 = h1. Then one has (yet
another) decomposition of the regular representation of Sn :

Theorem (Reg4: S 2020)

chRegSn =
∑
n≥1

Hkn[
∑
n≥1

Lie2n−1].

Question: Is there a more conceptual explanation?
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From sums to alternating sums: another meta theorem

Fix k ≥ 2. Let F1,k :=
∑

m≥0 fmk+1,G1,k :=
∑

m≥0 gmk+1 be two
series of symmetric functions where the fi , gi are of homogeneous
degree i , and f1 = g1 = p1. Define F alt

1,k :=
∑

m≥0(−1)mfmk+1 and

similarly G alt
1,k .

Theorem (S 2020)

F1,k [G1,k ] = p1 ⇐⇒ F alt
1,k [G alt

1,k ] = p1.
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The free Lie algebra

As a vector space, Lien is the degree n multilinear component of
the free Lie algebra on m generators. Its Glm-character was
computed by Brandt (1944) to be

ch Lien = Lien(x1, . . . , xm) =
1

n

∑
d |n

µ(d)p
n
d
d .

Recall (Reg2):

chRegSn =
∑
λ`n

Hλ[Lie] =
∑
λ`n

hm1 [Lie1]hm2 [Lie2] . . . ,

In the Glm-context, the Poincaré-Birkhoff-Witt theorem for the free
Lie algebra says its universal enveloping algebra is its symmetric
algebra. Hence by Schur-Weyl duality, Thrall’s theorem gives the
decomposition of the full tensor algebra as a sum of symmetrised
Lie modules.
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Other series that have nice plethystic inverses: 1 mod k

Let β
(j)
n , 0 ≤ j ≤ k − 1, be the Frobenius characteristic of the

unique nonvanishing homology Sn-module of the subposet of
partitions of n with block sizes congruent to j mod k.

Theorem (Calderbank-Hanlon-Robinson 1986)

Fix k ≥ 2. The symmetric functions

(INV 7)
∑
m≥0

h1+mk and
∑
m≥0

(−1)mβ
(1)
1+mk

are plethystic inverses.
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1 mod k continued

From the meta theorem we obtain:

Theorem (S 2020)

Fix k ≥ 2. The following pairs of symmetric functions are
plethystic inverses:

(INV 8)
∑
m≥0

(−1)mh1+mk and
∑
m≥0

β
(1)
1+mk .

(INV 9)
∑
m≥0

e1+mk and
∑
m≥0

(−1)mω(β
(1)
1+mk), k even.

(INV 10)
∑
m≥0

(−1)me1+mk and
∑
m≥0

ω(β
(1)
1+mk), k even.
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More on Thrall’s decomposition, Reg2

Recall

chRegSn =
∑
λ`n

Hλ[Lie] =
∑
λ`n

hm1 [Lie1]hm2 [Lie2] . . . .

The modules Hλ[Lie] are the higher Lie modules. Their irreducible
decomposition is known only for the cases λ = (n), (1n) and (2a)
or (2a, 1).
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Higher odd Lie modules and the free Jordan algebra

Let Jn be the degree n multilinear component of the free Jordan
algebra on m generators. Instead of the Lie bracket, we have the
bracket

[x , y ] = x ⊗ y+y ⊗ x .

Schur-Weyl duality:
View Jn as an Sn-module, with Frobenius characteristic ηn. Set
η0 = 1.

Theorem (Calderbank-Hanlon-S 1994)

The Frobenius characteristic of the Sn-module on the free Jordan
algebra satisfies

H[
∑
n≥1

Lie2n−1] =
∑
n≥0

ηn.
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Deformations of the free Lie algebra

Fix p ≥ 2. Let αp be a primitive pth root of unity. Consider the
degree n multilinear component of the free algebra with bracket
[x , y ] := x ⊗ y − αp y ⊗ x . The representation ηn(p) of Sn on this
component is a sum of higher Lie modules:

Theorem (Calderbank-Hanlon-S 1994)

ch ηn(p) =
∑
λ`n

λi 6≡0 mod p

Hλ[Lie].
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The higher conjugacy modules 1

The meta theorem can be used to prove:

Theorem (Solomon 1961)

H[
∑
n≥1

Conjn] =
∑
λ

Hλ[
∑
n≥1

Conjn] =
∑
µ`n

pµ.

Hλ[
∑

n≥1 Conjn] is the action by conjugation on the class indexed
by λ. The character value on σ is the order of the centraliser of σ.
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The higher conjugacy modules 2

Theorem (S 2017)

E [
∑
n≥1

Conjn] =
∑
λ

Eλ[
∑
n≥1

Conjn] =
∑
µ`n

all parts odd

pµ.
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The higher Lie
(2)
n modules

Theorem (S 2018)

H[
∑
n≥1

Lie
(2)
n ] =

∑
λ

Hλ[
∑
n≥1

Lie
(2)
n ] =

∑
µ`n

all parts a power of 2

pµ.
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Open problems

(♣) Why does the number of standard Young tableaux t of
shape λ with major index ≡ k mod n depend only on gcd(k, n)?

Fix n ≥ 1. What is the irreducible decomposition of the degree n
term in

1 Hλ[Lie]? (Thrall’s problem – 1942)

2 Hλ[Conj ]?

3 More generally, for the degree n term in Hλ[
∑

n≥1 `
(k)
n ]?

Known for these cases:

1 λ = (n) : (Stanley, Kráskiewicz-Weyman)

2 λ = (1n) (the trivial module)

3 λ = (2a), n = 2a, or (2a, 1), n = 2a + 1.

4 The multiplicity of sµ in ha[Lieb], ab = n for µ = (n − k, 1k)
(recent work of Hegedus-Roichman).
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Proof that H[Lie] = (1− p1)−1 : use H = exp(
∑

i≥1
pi
i )

logH[Lie] =
∑
i≥1

pi
i

[
∑
n≥1

1

n

∑
d |n

µ(d)p
n
d
d ]

=
∑
i≥1

1

i

∑
n≥1

1

n

∑
d |n

µ(d)p
n
d
d [pi ]

=
∑
i≥1

1

i

∑
j ,d≥1

1

jd
µ(d)(pd [pi ])

j

=
∑

i ,j ,d≥1

1

jdi
µ(d)pjdi =

∑
m≥1

1

jm
pjm

∑
d≥1,d |m

µ(d)

=
∑
m≥1

1

jm
pjm δ1,m =

∑
j≥1

pj1 = log(1− p1)−1.
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Classically known plethysms (Littlewood)

(See Stanley, EC2 or Macdonald.)

hn[h2] =
∑

λ`2n, λi even
sλ = hn[Conj2].

hn[e2] =
∑

λ`2n, λ′i even

sλ = hn[Lie2].
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Wreath Products 1

Define Sm[Sn] to be the following subgroup of Smn :

1 Partition [mn] into n equal intervals of length m : Let
Ik = {(k − 1)n + 1, . . . , kn}, 1 ≤ k ≤ m.

2 Identify the Young subgroup Sn × . . .× Sn︸ ︷︷ ︸
m

with the product

Sm
n = ×k

j=1SIj , a subgroup of Smn.

3 Let σ̂k be the permutation which exchanges the letters of I1
with Ik . So σ̂2k = 1 and the map (1, k) 7→ σ̂k identifies Sm
with a subgroup of Smn.

4 Elements in Sn
m look like

∏m
i=1(σ̂ixi σ̂i ), xi ∈ Sn.

5 Ex: Let x1 = (12), x2 = (123), x3 = (1), x4 = (1) be 4
elements in S3. The element in S4

3 looks like
213 564 789 10 11 12 in one-line notation.
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Wreath Products 2: Sm[Sn] as a subgroup of Smn

Lemma

Every element in the normaliser N(Sn
m) has a unique expression of

the form
m∏
i=1

(σ̂ixi σ̂i ) σ̂,

where xi ∈ Sn, σ ∈ Sm, and σ̂ is the image of σ in Smn under the
map (1, k) 7→ σ̂k .

Ex: Let x1 = (12), x2 = (123), x3 = (1), x4 = (1) be 4 elements in
S3. Let σ = (1234) ∈ S4. Then (x1, x2, x3, x4;σ) is the permutation(

1 2 3 4 5 6 7 8 9 10 11 12
5 6 4 7 8 9 10 11 12 2 1 3

)
.
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Wreath Product Modules 1

k any field.
Let W be an Sn-module, V an Sm-module. Define the
Sm[Sn]-module V [W ] to be the following:

1 As a vector space over k , V [W ] is the tensor product
W⊗m ⊗ V .

2 The action of Sm[Sn] is defined as follows. Let
wi ∈W , v ∈ V . Let xi ∈ Sn, 1 ≤ i ≤ m, and σ ∈ Sm. Then

(x1, . . . , xm;σ) · (w1 ⊗ . . .⊗ wm ⊗ v)

:= x1wσ−1(1) ⊗ . . .⊗ xmwσ−1(m) ⊗ (σ · v).

3 dimV [W ] = (dimW )m dimV .

4 chV [W ] ↑Smn

Sm[Sn]
= chV [chW ].
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Wreath Product Modules 2

Let W be an Sn-module, V an Sm-module.

1 (Linearity in first variable) Let Vi be Sm-modules, i = 1, 2.
Then V1[W ]⊕ V2[W ] ' (V1 ⊕ V2)[W ] as Sm[Sn]-modules.

2 (Multiplicativity in first variable) Let Ui be Smi -modules,
i = 1, 2. Then

(U1[W ]⊗ U2[W ])
xSm1+m2 [Sn]

Sm1 [Sn]×Sm2 [Sn]
' (U1 ⊗ U2)[W ] as

Sm1+m2 [Sn]-modules, via the natural embedding of Sm1 × Sm2

as a subgroup of Sm1+m2 ;

3 (Inner transitivity of induction) Let H < K be subgroups. Let

WH be an H-module. Then V [WH ]
xSm[K ]

Sm[H]
' V [WH

xK

H
]as

Sm[K ]-modules.
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THANK YOU!
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