Reduced Kronecker coefficients and Deligne categories

Inna Entova-Aizenbud, BGU

June 28, 2020

Inna Entova-Aizenbud, BGU Reduced Kronecker coefficients and Deligne categories

▲ @ ▶ ▲ 三 ▶ ▲

ъ

Kronecker coefficients

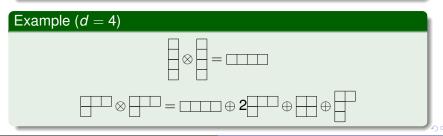
Problem

Consider the tensor product of two finite-dimensional complex representations of S_d . How does it decompose into a sum of irreducibles?

Definition (Kronecker coefficient)

Given Young diagrams λ, μ, τ of size d,

$$g_{\mu, au}^{\lambda} := [\mu \otimes au : \lambda]$$



Inna Entova-Aizenbud, BGU

Reduced Kronecker coefficients and Deligne categories

Long top row

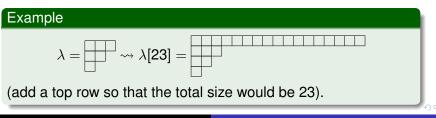
Idea: consider Young diagrams with very long top row. What will happen to Kronecker coefficients?

Notation

Given Young diagram λ of any size and $d \ge |\lambda| + \lambda_1$, let

 $\lambda[d] := add top row of length d - |\lambda| to \lambda.$

 $\lambda[d]$ is a Young diagram with d cells. The corresponding representation of S_d is also denoted $\lambda[d]$ for $d \ge |\lambda| + \lambda_1$ (otherwise we set $\lambda[d] := 0$).



Reduced Kronecker coefficients and Deligne categories

Proposition (Murnaghan, 1938)

Let μ, τ, λ be Young diagrams of **any** size. The Kronecker coefficient $g_{\mu[d],\tau[d]}^{\lambda[d]}$ does not depend on d when d >> 0. This value is called the **reduced** (or stable) Kronecker coefficient $\bar{g}_{\mu,\tau}^{\lambda}$.

- Reduced Kronecker coefficients generalize
 Littlewood-Richardson coefficients (these occur in decomposition of tensor products of *GL_n*-modules), when |λ| = |μ| + |τ|.
- Briand, Orellana, Rosas (2009): **any** Kronecker coefficient can be expressed through reduced Kronecker coefficients.

Will show that they occur naturally in tensor categories.

코 에 제 코 어

Let $S_{\infty} = \bigcup_{d \ge 0} S_d$ be the group of permutations $\mathbb{N} \to \mathbb{N}$ with finite support.

Sam, Snowden (2013) defined the abelian symmetric monoidal category $Rep(S_{\infty})$ (algebraic representations of S_{∞}).

- Abelian C-linear category with operation ⊗.
- Simple modules L_∞(λ) ↔ Young diagrams λ of any size.
 Example: L_∞(∅) = ℂ, L_∞(□) = reflection repr.
- For all $d \ge 0$, have specialization functors

$$Rep(S_{\infty}) \rightarrow Rep(S_d), \ L_{\infty}(\lambda) \rightarrow \lambda[d]$$

(left-exact, full, essentially surjective, respects \otimes).

Structure constants: reduced Kronecker coefficients!

$$ar{g}_{\mu, au}^{\lambda} := [\mathcal{L}_{\infty}(\mu) \otimes \mathcal{L}_{\infty}(au) : \mathcal{L}_{\infty}(\lambda)]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Abelian Deligne categories

- Deligne (2007), Comes, Ostrik (2013) constructed C-linear abelian rigid symmetric monoidal categories *Rep*(<u>S</u>_t) for all t ∈ C.
- Rigidity: can talk about dimensions of objects in $Rep(\underline{S}_t)$.
- $Rep(\underline{S}_t)$ is a highest-weight category.
 - Simple objects \longleftrightarrow Young diagrams of any size.
 - Standard objects (~ Verma modules) ↔ Young diagrams of any size.
 The standard object in *Rep*(<u>S</u>_t) corresponding to a Young diagram λ is denoted by *M*_λ.
 - Enough projectives/injectives.
- For $t \notin \mathbb{Z}_{\geq 0}$, $Rep(\underline{S}_t)$ is semisimple.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Tilting objects

Definition

A *tilting object* T has a filtration with standard subquotients and so does its dual.

The indecomposable tilting object in $Rep(\underline{S}_t)$ corresponding to a Young diagram λ is denoted by T_{λ} .

The full subcategory of tilting objects is called $Tilt(\underline{S}_t)$.

 $\begin{array}{c} \text{Indecomposable} & \underbrace{\text{treat as}}_{\text{object } T_{\lambda}} & \underbrace{ S_t \text{ irreducible repr. } \lambda[t] }_{\text{("very long" top row of length } t-|\lambda|)} \end{array}$

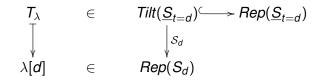
Example

- $T_{\emptyset} = \mathbf{1}$ the unit object.
- Object \mathfrak{h}_t of dim t ("permutation repr.").

• T_{\Box} - the reflection representation (dim. is t - 1 for $t \neq 0$). If $t \neq 0$, $\mathfrak{h}_t = T_{\emptyset} \oplus T_{\Box}$.

Properties of $Tilt(\underline{S}_t)$

- It is closed under taking \otimes , \oplus and direct summands.
- The categories *Tilt*(<u>S</u>_t), t ∈ C form a "polynomial" family interpolating the categories *Rep*(S_d): ∀d ∈ Z_{≥0} have a specialization functor,



It respects \oplus , \otimes , is full and essentially surjective.

- Dimensions of objects in $Tilt(\underline{S}_t)$ are polynomials in t.
- For $t \notin \{0, 1, 2, \dots, |\lambda| + \lambda_1\}$, $T_{\lambda} = M_{\lambda}$ and it is simple.
- For $t \notin \mathbb{Z}_{\geq 0}$, $Tilt(\underline{S}_t) = Rep(\underline{S}_t)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Question: what is the tensor structure of $Rep(\underline{S}_t)$? For example, fix $t \in \mathbb{C}$ and consider Young diagrams μ, τ, λ be of **any** size.

- $T_\mu \otimes T_ au$ is tilting. What is

$$[T_{\mu}\otimes T_{\tau}:T_{\lambda}]=?$$

- Can we say something about

$$M_{\mu} \otimes M_{\tau} = ?$$

ヘロン 人間 とくほ とくほ とう

э.

Reduced Kronecker coefficients and $Rep(\underline{S}_t)$ - cont.

The following idea can be derived from the polynomiality of the family $Tilt(\underline{S}_t)$:

Theorem (E., 2014)

Let μ, τ, λ be Young diagrams of **any** size. Then the value of $[T_{\mu} \otimes T_{\tau} : T_{\lambda}]_{Tilt(\underline{S}_t)}$ is constant for almost all t (except finitely many non-negative integer values).

Moreover, we have:

$$g_{\mu[d], au[d]}^{\lambda[d]} = [\mathcal{T}_{\mu} \otimes \mathcal{T}_{ au} : \mathcal{T}_{\lambda}]_{\mathit{Tilt}(\underline{S}_{t=d})}$$

for d >> 0 (and this is $\bar{g}_{\mu,\tau}^{\lambda}$).

So, reduced Kronecker coefficients are the structure constants in the tensor categories $Tilt(\underline{S}_t)$ for $t \notin \mathbb{Z}_{\geq 0}$:

$$[T_{\mu} \otimes T_{\tau} : T_{\lambda}]_{Tilt(\underline{S}_t)} = \bar{g}_{\mu, \tau}^{\lambda} \quad orall \lambda, \mu, au$$

Sketch of proof

Claim:

$$g_{\mu[d], au[d]}^{\lambda[d]} = [T_{\mu} \otimes T_{ au} : T_{\lambda}]_{\mathit{Tilt}(\underline{S}_t)}$$

for d >> 0 and generic t.

Sketch of Proof.

イロト イ理ト イヨト イヨト

÷.

More information from the study of the "special cases" of Deligne categories: $Rep(\underline{S}_{t=d})$ when *d* is an integer.

ヘロト ヘアト ヘビト ヘビト

1

So what is the connection to $Rep(S_{\infty})$?

Theorem (Barter - E. - Heidersdorf, 2017)

For every $t \in \mathbb{C}$ there exists a specialization functor

 $\Gamma_t: \operatorname{Rep}(S_\infty) \to \operatorname{Rep}(\underline{S}_t), \ L_\infty(\lambda) \to M_\lambda$

(exact, faithful, respects \otimes).

Corollary

The object $M_{\mu} \otimes M_{\tau}$ always has a filtration with standard subquotients, and $(M_{\mu} \otimes M_{\tau} : M_{\lambda}) = \overline{g}_{\mu,\tau}^{\lambda}$.

ヘロン 人間 とくほ とくほ とう

Want to compute structure constants for tilting objects: what is $[T_{\mu} \otimes T_{\tau} : T_{\lambda}]_{Tilt(\underline{S}_{t=d})} = ?.$

For this, need to understand the filtration of tilting objects by standard modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Let $t \in \mathbb{C}$. The following equivalence relation was defined by Comes, Ostrik to describe the blocks of the Deligne categories:

Definition (Equivalence relation $\stackrel{t}{\sim}$ on the set of Young diag.)

 $\lambda \stackrel{t}{\sim} \mu$ if the **infinite** sequences $(t - |\lambda|, \lambda_1 - 1, \lambda_2 - 2, ...)$ and $(t - |\mu|, \mu_1 - 1, \mu_2 - 2, ...)$ can be obtained from one another by permuting a finite number of elements.

Here $\forall i, \lambda_i$ is the length of row *i* of λ (zero if no cells in this row).

Analogy: dot action of the Weyl group on weights of the Lie algebra \mathfrak{gl}_n .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Non-trivial equivalence classes (more than one element): Let $d \in \mathbb{Z}_{\geq 0}$.

 $\stackrel{\text{Non-trivial}}{\stackrel{t=d}{\sim}-\text{equivalence classes}} \stackrel{\text{bij.}}{\longleftrightarrow} \stackrel{\text{Young diagrams}}{\text{of size } d}$

To Young diagram λ of size *d* corresponds a non-trivial class $\{\lambda^{(i)}\}_{i}$,

 $\lambda^{(0)} \subset \lambda^{(1)} \subset \lambda^{(2)} \subset \dots$

where $\lambda^{(0)} = \bar{\lambda}$ (λ without its top row), and other $\lambda^{(i)}$ have explicit formulas as well.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Let $t = d \in \mathbb{Z}_{\geq 0}$.

Question: Which standard objects appear as subquotients in the standard filtration of T_{λ} ?

Answer:

- $T_{\lambda} = M_{\lambda}$ if λ lies in a trivial $\overset{t=d}{\sim}$ -class,
- $T_{\lambda} = M_{\lambda}$ if $\lambda = \lambda^{(0)}$ in a non-trivial $\stackrel{t=d}{\sim}$ -class $\lambda^{(0)} \subset \lambda^{(1)} \subset ...$
- $T_{\lambda^{(i)}}$ is an extension of $M_{\lambda^{(i)}}$ and $M_{\lambda^{(i-1)}}$ for i > 0 and a non-trivial $\stackrel{t=d}{\sim}$ -class $\lambda^{(0)} \subset \lambda^{(1)} \subset \dots$ Denote: $gr(T_{\lambda}) = M_{\lambda}$ and $gr(T_{\lambda}) := M_{\lambda^{(i)}} \oplus M_{\lambda^{(i-1)}}/$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Briand-Orellana-Rosas result reproved

Let λ, μ, τ be Young diagrams, and $d \ge |\lambda| + \lambda_1$. Consider the non-trivial $\stackrel{t=d}{\sim}$ -class $\lambda = \lambda^{(0)} \subset \lambda^{(1)} \subset ...$

Theorem (E., 2014, reformulated)

In $Rep(\underline{S}_{t=d})$, we have:

$$[T_{\mu} \otimes T_{\tau} : T_{\lambda}] = \sum_{i \ge 0} (-1)^i \left(gr(T_{\mu}) \otimes gr(T_{\tau}) : M_{\lambda^{(i)}} \right)$$

Corollary (Originally due to Briand, Orellana, Rosas, 2009)

Let $d \ge |\lambda| + \lambda_1, |\mu| + \mu_1, |\tau| + \tau_1$

$$g_{\mu \left[d
ight], au \left[d
ight]}^{\lambda \left[d
ight]} = \sum_{i \geq 0} (-1)^i ar{g}_{\mu, au}^{\lambda^{(i)}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

In fact, this shows that **ANY** Kronecker coefficient can be expressed through reduced Kronecker coefficients. Indeed, let λ, μ, τ be Young diagrams of size *d*. The corollary says:

$$g_{\mu, au}^\lambda = \sum_{i\geq 0} (-1)^i ar{g}_{ar{\mu},ar{ au}}^{\lambda^{(i)}}$$

(here $\bar{\mu} := \mu$ without its top row, similarly for τ).

ヘロン 人間 とくほ とくほ とう

∃ <2 <</p>

What if we take other values of d?

Can obtain new, previously unknown identities involving only reduced Kronecker coefficients.

Idea: Projectives in $Rep(\underline{S}_t)$ are tilting, but not all tiltings are necessarily projective! In fact, T_{λ} is not projective in $Rep(\underline{S}_{t=d})$ ($d \in \mathbb{Z}_{\geq 0}$) precisely when $|\lambda| + \lambda_1 \leq d$.

Nice property of projectives in (rigid) tensor categories: projective \otimes any object = projective.

So, if T_{μ} is projective in $Rep(\underline{S}_{t=d})$ while T_{λ} is not, then

$$[T_{\mu} \otimes T_{\tau} : T_{\lambda}]_{Rep(\underline{S}_{t=d})} = 0.$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Proposition (E., 2014)

• Assume $d \ge |\lambda| + \lambda_1$ and $d \in \{|\mu| + \mu_l - l : l = 1, ..., |\mu|\}$ (i.e. μ is in a trivial $\stackrel{t=d}{\sim}$ -class). Then

$$\sum_{i\geq 0}(-1)^iar{g}_{\mu, au}^{\lambda^{(i)}}=0$$

• (Generalization of [BOR]): Consider three non-trivial $\stackrel{n}{\sim}$ -classes, denoted by $\{\lambda^{(i)}\}_{i\geq 0}$, $\{\mu^{(i)}\}_{i\geq 0}$ and $\{\tau^{(i)}\}_{i\geq 0}$ respectively (these classes are not necessarily distinct). Fix any $k, l \geq 0$. Then

$$\sum_{i\geq 0} (-1)^{i} \bar{g}_{\mu^{(k)},\tau^{(i)}}^{\lambda^{(i)}} = (-1)^{k+i} g_{\mu^{(0)}[n],\tau^{(0)}[n]}^{\lambda^{(0)}[n]}$$

(BOR: k = 0, l = 0).

Example

Let d = 0. The first case holds whenever either μ or τ is *not* a column diagram, and then

$$ar{g}^{\emptyset}_{\mu, au} - ar{g}^{\scriptscriptstyle extsf{ iny black r}}_{\mu, au} + ar{g}^{\scriptscriptstyle extsf{ iny black r}}_{\mu, au} - ar{g}^{\scriptscriptstyle extsf{ iny black r}}_{\mu, au} + ... = 0$$
 .

(sum ends with column of length $|\mu| + |\tau|$).

Second case: μ, τ are column partitions, of lengths *k*, *l* respectively. Then

$$ar{g}^{\emptyset}_{\mu, au} - ar{g}^{\scriptscriptstyle ext{ iny D}}_{\mu, au} + ar{g}^{\scriptscriptstyle ext{ iny B}}_{\mu, au} - ar{g}^{\scriptscriptstyle ext{ iny B}}_{\mu, au} + ... = (-1)^{k+l} \delta_{k,l}$$

イロト イポト イヨト イヨト

æ

In https://arxiv.org/abs/1407.1506, the category $Tilt(\underline{S}_t)$ is denoted $Rep(S_t)$ and the abelian category $Rep(\underline{S}_t)$ is denoted $Rep^{ab}(S_t)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ