Random *t*-cores and hook lengths in random partitions

joint work with **Arvind Ayyer** 18th June 2020

Preliminaries

A partition λ is a non-increasing tuple of non-negetive integers. We denote $\mathcal{P}(n)$ to be the set of partitions λ of size n and $p(n) := |\mathcal{P}(n)|$.

Example

For n = 4, we have p(4) = 5; the following are Young diagrams of these five partitions in $\mathcal{P}(4)$.

Let c be a cell in the Young diagram of a partition λ ,

- Hook of c = cells to the right and to the bottom of c (in the same row/column).
- **Rim-hook** of c = boundary joining the two ends of the hook.
- Hook-length h_c is the size of Rim-hooks of c.

Example

Let $\lambda = (5, 4, 4, 2)$ and c is the cell at position (1, -2). The shaded set is the rim-hook of c.

The t-core of a partition λ , denoted core_t(λ), is the partition obtained by removing as many rim hooks of size t as possible.

Example

Let t = 3 and $\lambda = (5, 4, 2, 2)$, then $core_3(\lambda) = (2, 1, 1)$.

We say a partition λ is a

- *t*-core if $core_t(\lambda) = \lambda$.
- *t*-divisible if $\operatorname{core}_t(\lambda) = (0)$. (Note that *t* must divides $|\lambda|$)

Let $\mathfrak{C}_t(n)$ and $\mathcal{D}_t(n)$ be the set of t-core and t-divisible partition resp of size n. We also denote $c_t(n)$ and $d_t(n)$ to be the cardinality of the above sets.

Example

For t = 3 and n = 4, we see $\mathcal{D}_3(4)$ is empty and $\mathfrak{C}_3(4)$ consists of

Let \mathcal{P} , \mathcal{D}_t and \mathfrak{C}_t be union of $\mathcal{P}(n)$, $\mathcal{D}_t(n)$ and $\mathfrak{C}_t(n)$ over all n.

Theorem (Partition Division)

There is a natural bijection

$$\Delta_t: \mathcal{P} \to \mathfrak{C}_t \times \mathcal{D}_t$$

given by $\Delta_t(\lambda) = (\rho, \nu)$, where $\rho = \operatorname{core}_t(\lambda)$ and ν is the 't-quotient'. Moreover,

 $|\lambda|=|\rho|+|\nu|$

Remark

This a generalization of the euclidean division for natural numbers which can be stated as $\Delta_t : \mathbb{N} \to \{0, 1, \dots, t-1\} \times t\mathbb{N}$ is a bijection.

Corollary

We have the following identity of generating functions

$$\sum_{k=0}^{\infty} p(k)q^{k} = \left(\sum_{k=0}^{\infty} c_{t}(k)q^{k}\right) \left(\sum_{k=0}^{\infty} d_{t}(k)q^{k}\right)$$

The following identities are known :

$$\sum_{n=0}^{\infty} c_t(n) x^n = \prod_{k=1}^{\infty} \frac{(1-x^{tk})^t}{1-x^k}$$
$$\sum_{n=0}^{\infty} d_t(n) x^n = \prod_{k=1}^{\infty} \frac{1}{(1-x^{tk})^t}.$$

Remark

We know the following asymptotic results (work by Hardy-Ramanujan)

$$p(n) \sim \frac{\exp\left(\pi\sqrt{\frac{2n}{3}}\right)}{4n\sqrt{3}}, \quad d_t(n) \sim \frac{t^{(t+2)/2}\exp\left(\pi\sqrt{\frac{2n}{3}}\right)}{2^{(3t+5)/4}3^{(t+1)/4}n^{(t+3)/4}}.$$
 (1)

But $c_t(n)$ does not have a similar asymptotic result.

- $c_2(n) = 1$ for n a triangular number and zero otherwise.
- Gravnille and Ono

$$c_3(n) = \sum_{d \mid (3n+1)} \left(\frac{d}{3}\right)$$

• Gravnille and Ono showed *t*-core partition conjecture that for t > 3,

 $c_t(n) > 0$

$$C_t(n) := \sum_{i=0}^{\lfloor \frac{n}{t} \rfloor} c_t(n-i\,t).$$

There is a combinatorial reason for taking this sum. Let $\pi: \mathfrak{C}_t \times \mathcal{D}_t \to \mathfrak{C}_t$ be the projection, then

$$C_t(n) = |\pi(\Delta_t(\mathcal{P}(n)))|$$

=#{core_t(λ) | λ a partition of n }.

Remark

When t is a prime number, $C_t(n)$ can be defined to be the number of t-blocks in the t-modular representation theory of the symmetric group S_n .

Theorem (AA,SS)

We have

$$C_t(n) = \frac{(2\pi)^{(t-1)/2}}{t^{(t+2)/2} \Gamma(\frac{t+1}{2})} \left(n + \frac{t^2 - 1}{24}\right)^{(t-1)/2} + O(n^{(t-2)/2}).$$

Distribution of the size of *t*-core of uniformely random $\lambda \in \mathcal{P}(n)$

Fix $t\geq 2.$ Let λ be a uniformly random partition of n and Y_n be random variable on $\mathbb{N}_{>0}$ given by

$$Y_n = |\operatorname{core}_t(\lambda)|.$$

The probability mass function of Y_n is given by

$$\mu_n(k) = \frac{\#\{\lambda \vdash n : |\operatorname{core}_t(\lambda)| = k\}}{p(n)}$$
$$= \frac{c_t(k)d_t(n-k)}{p(n)}$$

We are interested in the convergence of Y_n .

Let X_n be continuous random variables defined on $[0,\infty)$ with the probability density function $f_n \equiv f_{n,t}$ given by

$$f_n(x) = \frac{\sqrt{n} c_t(\lfloor x \sqrt{n} \rfloor) d_t(n - \lfloor x \sqrt{n} \rfloor)}{p(n)}$$

Note that

$$\int_0^\infty f_n(x) = \sum_{k=0}^n \frac{c_t(k)d_t(n-k)}{p(n)} = 1.$$

Theorem (Main Result (AA,SS))

The random variable X_n converges weakly to a gamma-distributed random variable X with shape parameter $\alpha = (t - 1)/2$ and rate parameter $\beta = \pi/\sqrt{6}$.

Recall that the gamma distribution with shape parameter $\alpha > 0$ and rate parameter $\beta > 0$ is a continuous random variable on $[0, \infty)$ with density given by

$$\gamma(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x), & x \ge 0, \\ 0, & x < 0, \end{cases}$$
(2)

where Γ is the standard gamma function.

Figure 1: Comparison of the limiting CDFs and densities for small values of *n* with t = 5. A red solid line is used for the limiting distribution, dashed blue for n = 20, dash-dotted green for n = 62 and dotted magenta for n = 103. In (a) the CDFs, and in (b) the densities, are plotted for X and these X_n 's.

Theorem (AA,SS)

The expectation of the size of t-core for a uniformly random partition of size n is asymptotic to $(t-1)\sqrt{6n}/2\pi$.

Figure 2: The average size of the 3-core for partitions of size 1 to 100 in blue circles, along with the result from Corollary, $\sqrt{6x}/\pi$, as a red line.

A brief introduction to abacus

An abacus or 1-runner is a function $w : \mathbb{Z} \to \{0,1\}$ such that w(m) = 1 for m << 0and w(m) = 0 for m >> 0. We say w is justified at position p if $w_i = 1$ (resp $w_i = 0$) for i < p (resp. $i \ge p$).

Any abacus can be transformed to a justified by moving 1's to the left. We say w is **balanced** if after this transformation, we get abacus justified at 0.

Example

$$w = \cdots 11100110\underline{1}1001000\cdots$$
$$\downarrow$$
$$w' = \cdots 1111111\underline{0}000000\cdots$$

Theorem

There is a natural bijection

$$\mathcal{P} = \bigg\{ \text{partitions } \lambda \bigg\} \leftrightarrow \bigg\{ \text{Balanced Abaci } w \bigg\}.$$

• cell c in $\lambda \leftrightarrow$ pair of positions i < j with $(w_i, w_j) = (0, 1)$.

Abaci and Partitions

Theorem

There is a natural bijection

$$\mathcal{P} = \bigg\{ \textit{partitions } \lambda \bigg\} \leftrightarrow \bigg\{ \textit{Balanced Abaci } w \bigg\}.$$

- cell c in $\lambda \leftrightarrow$ pair of positions i < j with $(w_i, w_j) = (0, 1)$.
- Removing rim-hook of $c \leftrightarrow$ Swapping $(w_i, w_j) = (0, 1)$ to $(w'_i, w'_i) = (1, 0)$.

Let w be a 1-runner abacus, then the t-runner of w is the t-tuple $(\lambda^0, \ldots, \lambda^{t-1})$ of 1-runner abaci given by

$$\lambda_n^i = w_{nt+i}$$

Example

Let t = 3 and $\lambda = (5, 4, 2, 2)$ then $w = (\cdots 110011\underline{0}010100\cdots)$ then

What is $\operatorname{core}_t(\lambda)$?

The t-core of a partition λ , denoted core_t(λ), is the partition obtained by removing as many rim hooks of size t as possible.

Example

Let t = 3 and $\lambda = (5, 4, 2, 2)$, then $core_3(\lambda) = (2, 1, 1)$.

Let w be a 1-runner abacus, then the t-runner of w is the t-tuple $(\lambda^0, \ldots, \lambda^{t-1})$ of 1-runner abaci given by

$$\lambda_n^i = w_{nt+i}$$

Example

$\lambda^0 =$	(,	1,	1,	0,	<u>0</u> ,	0,	0,),
$\lambda^1 =$	(,	1,	1,	1,	0,	1,	0,),
$\lambda^2 =$	(,	1,	0,	1,	1,	0,	0,).

Then $core_3(\lambda) = (2, 1, 1)$ is given by

Let (p_0, p_1, p_2) be the position of justification which is (-1, 1, 0).

Let λ be a partition, $(\nu^0, \ldots, \nu^{t-1})$ be corresponding t-runners. Let ν^i be the balanced 1-runner obtained by shifting λ^i appropriately. We denote t-quotient partition to be the partition ν corresponding to t-runner abacus $(\nu^0, \ldots, \nu^{t-1})$.

Example

Let t = 3 and $\lambda = (5, 4, 2, 2)$ then $w = (\cdots 110011 \underline{0}010100 \cdots)$ then

Then the $\rho = \operatorname{core}_3(\lambda) = (2, 1, 1)$ and 3-quotient $\nu = (3, 3, 2, 1)$ is given by

$\nu^0 =$	(,	1,	1,	1,	<u>0</u> ,	0,	0,),
$\nu^1 =$	(,	1,	1,	0,	1,	0,	0,),
$\nu^2 =$	(,	1,	0,	1,	1,	0,	0,).

Note also $|\lambda| = |\rho| + |\nu|$ and ν is by construction a 3-divisible partition.

Random Hook-length

Corollary (of the Main Result)

For a uniformly random cell c of a uniformly random partition λ of n, the probability that the hook length of c in λ is divisible by t is $1/t + O(n^{-1/2})$.

Proof.

Observe that removing a *t*-rim hook reduces the number of hooks h_c with $t|h_c$ by exactly one. So, for any partition $\lambda \vdash n$

$$\#\{c \in \lambda \mid t | h_c\} = \frac{n - |\operatorname{core}_t(\lambda)|}{t}.$$

Thus the probability that t divides h_c as $n \to \infty$ is

$$\lim_{n \to \infty} \frac{n - \mathcal{E}(|\operatorname{core}_t(\lambda)|)}{tn} = \frac{1}{t} - \lim_{n \to \infty} \frac{t - 1}{2t\pi} \sqrt{\frac{6}{n}},$$

Removing size t rim-hook

Example

Consider the partition $\lambda = (6, 4, 3, 1)$ and let t = 4.

Removing the shaded size 4 rim-hook we obtain $\lambda' = (6, 4)$.

i	No. of hook lengths in $\lambda \equiv i$	No. of hook lengths in $\lambda' \equiv i$
	mod 4	mod 4
0	3	2
1	5	3
2	4	3
3	2	2

Therefore, we have removed two cells congruent to 1 modulo 4, but none congruent to 3 modulo 4.

Let \mathcal{P} , \mathcal{D}_t and \mathfrak{C}_t be union of $\mathcal{P}(n)$, $\mathcal{D}_t(n)$ and $\mathfrak{C}_t(n)$ over all n.

Theorem (Partition Division)

There is a natural bijection

$$\Delta_t : \mathcal{P} \to \mathfrak{C}_t \times \mathcal{D}_t$$

given by $\Delta_t(\lambda) = (\rho, \nu)$, where $\rho = \operatorname{core}_t(\lambda)$ and ν is the 't-quotient'. Moreover,

 $|\lambda|=|\rho|+|\nu|$

We define the action of S_t on $\mathcal{D}_t(n)$, the set of t-divisible of n, partitions induced by the action S_t on the corresponding t-runners

$$\sigma \cdot (\nu^0, \nu^1, \dots, \nu^{t-1}) = (\nu^{\sigma_0}, \nu^{\sigma_1}, \dots, \nu^{\sigma_{t-1}})$$
(3)

Note that the above action preserves the size of the *t*-divisible partition.

Definition

We define the action of $\sigma \in S_t$ on $\mathcal{P}(n)$ by $\sigma \lambda = \Delta_t^{-1}(\rho, \sigma \nu)$.

The b-smoothing of a t-divisible partition ν , denoted C_{ν}^{b} , is the union of cells in the Young diagram of ν whose corresponding (0,1) pairs are at least (b+1) columns apart in the t-runner abacus of ν .

Example

Let $\nu = (7, 3, 2)$ be a 3-divisible partition, whose 3-runner abacus is given by

$\nu^0 =$	(,	1,	1,	0,	<u>0</u> ,	0,	1,	0,)
$\nu^1 =$	(,	1,	1,	0,	1,	0,	0,	0,)
$\nu^2 =$	(,	1,	1,	1,	0,	0,	0,	0,)

Then the following are the *b*-smoothings C_{μ}^{b} :

$\nu \in \mathcal{D}_3$	$C^0_{ u}$	$C^1_{ u}$	C_{ν}^2
(7, 3, 2)	(7,2)	(4)	(2)

Remark

 C_{ν}^{b} gives a sequence of sub partitions of ν ,

$$\nu \supset C_{\nu}^0 \supset C_{\nu}^1 \supset C_{\nu}^2 \dots$$

Moreover, the b-smoothings are invariant under action of S_t .

$$C^b_{\sigma\nu} = C^b_{\nu}$$

Lemma

For a uniformly random cell $c \in C_{\nu}^{b}$ of uniformly random ν , the probability that the hook length h_{c}^{ν} is congruent to i modulo t, where $i \neq 0$, is independent of i.

Example

Let $\nu = (7,3,2)$ be a 3-divisible partition, whose 3-runner abacus is given by

Let $\sigma = (213) \in S_3$, then $\sigma \cdot \nu = (8, 2, 2)$

Let $\Delta_t(\lambda) = (\rho, \nu)$ and $(\rho^1, \dots, \rho^{t-1})$ be the *t*-runner of the *t*-core ρ . Recall ρ^i are justified (say at positions p_i).

efinition
et
$b_\lambda = \max_{1 \leq i < j \leq t-1} p_i - p_j $
nen we define canonical smoothing $\mathcal{C}_{\lambda}=\mathcal{C}_{ u}^{b_{\lambda}}$ as sub partition of $ u.$
xample
et $\rho = (1)$ and $t = 3$

So $(p_0, p_1, p_2) = (1, 0, -1)$, hence $b_\lambda = 2$

Example

Let $\lambda = (10, 3)$. Then $\Delta_3(\lambda) = (\rho, \nu)$, where $\nu = (7, 3, 2)$ and $\rho = (1)$. The 3-runner abacus of ρ is given by $(p_0, p_1, p_2) = (1, 0, -1)$ which implies $b_{\lambda} = 2$.

and in the *t*-runner of λ

$$\begin{aligned} \lambda^0 &= (\dots, 1, 1, 1, \frac{0}{2}, 0, 0, 1, \dots) \\ \lambda^1 &= (\dots, 1, 1, 0, 1, 0, 0, 0, \dots) \\ \lambda^2 &= (\dots, 1, 1, 0, 0, 0, 0, 0, \dots) \end{aligned}$$

Lemma

Let λ be a partition with $\Delta_t(\lambda) = (\rho, \nu)$. Then there exists an injective map ϕ that takes the cells in C_{λ} to the cells in λ such that for any cell $c \in C_{\lambda}$, the hook lengths

$$h_{\phi(c)}^{\lambda} \equiv h_{c}^{
u} \mod t$$

Lemma

For a uniformly random cell $c \in \phi(C_{\lambda}) \subset \lambda$ of uniformly random λ , the probability that the hook length h_c^{λ} is congruent to i modulo t, where $i \neq 0$, is independent of i.

So it will be enough to show that for random λ ,

 $\phi(C_{\lambda})$ is 'majority' of cells in λ .

Lemma

For any partition $\lambda \vdash n$ with $\Delta_t(\lambda) = (\rho, \nu)$,

$$|\nu| - |C_{\lambda}| < \#\{c \in \nu \mid h_c < t(b_{\lambda} + 1)\} = O(t(b_{\lambda} + 1)\sqrt{n}).$$
(5)

A simple counting also gives us $b_{\lambda} \leq 2\sqrt{|\operatorname{core}_t(\lambda)|}$.

Since expected size of $\operatorname{core}_t(\lambda)$ is $O(\sqrt{n})$,

$$egin{aligned} |\lambda| - |\phi(\mathcal{C}_{\lambda})| &= |\operatorname{core}_t(\lambda)| + |
u| - |\mathcal{C}_{\lambda}| \ &= O(n^{3/4}) \end{aligned}$$

So far we have

- For i = 0, probability that $h_c \equiv i \mod t$ is 1/t.
- For $i \neq 0$ and $c \in \phi(C_{\lambda})$, probability that $h_c \equiv i \mod t$ is independent of i.

Using the size estimate and the above two result we obtain :

Theorem

For a uniformly random cell c of a uniformly random partition λ of n, the probability that the hook length of c in λ is congruent to i modulo t is asymptotic to 1/t for any $i \in \{0, 1, ..., t-1\}$.

• Distribution of the size of *t*-cores of uniformly random partition on *n* 'converges' to Gamma distribution (upon scaling) as $n \to \infty$.

- Distribution of the size of *t*-cores of uniformly random partition on *n* 'converges' to a Gamma distribution (upon scaling) as *n* → ∞.
- The expected value of $\operatorname{core}_t(\lambda)$ is of order \sqrt{n} , it is asymptotic to

$$(t-1)\sqrt{6n}/2\pi$$
.

- Distribution of the size of *t*-cores of uniformly random partition on *n* 'converges' to a Gamma distribution (upon scaling) as *n* → ∞.
- The expected value of $\operatorname{core}_t(\lambda)$ is of order \sqrt{n} , it is asymptotic to

$$(t-1)\sqrt{6n}/2\pi$$
.

• There is a new construction "**smoothing**" of partitions which can be explored further.

- Distribution of the size of *t*-cores of uniformly random partition on *n* 'converges' to a Gamma distribution (upon scaling) as *n* → ∞.
- The expected value of $\operatorname{core}_t(\lambda)$ is of order \sqrt{n} , it is asymptotic to

$$(t-1)\sqrt{6n}/2\pi$$
.

- There is a new construction "smoothing" of partitions which can be explored further.
- Hook-lengths are randomly distributed over modulo classes of t.

Thank you!

Questions