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Preliminaries



(Integer) Partitions

A partition \ is a non-increasing tuple of non-negetive integers. We denote P(n) to
be the set of partitions X of size n and p(n) := |P(n)|.

For n = 4, we have p(4) = 5; the following are Young diagrams of these five
partitions in P(4).
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Let c be a cell in the Young diagram of a partition \,
e Hook of ¢ = cells to the right and to the bottom of c (in the same row/column).

e Rim-hook of ¢ = boundary joining the two ends of the hook.

e Hook-length h. is the size of Rim-hooks of c.

Let A = (5,4,4,2) and c is the cell at position (1, —2). The shaded set is the
rim-hook of c.




t-core of a partition

The t-core of a partition )\, denoted core:()\), is the partition obtained by removing
as many rim hooks of size t as possible.

Let t =3 and X\ = (5,4, 2,2), then corez(\) = (2,1,1).
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t-core and t-divisible partition

Definition

We say a partition \ is a
e t-core if corer(\) = A.

o t-divisible if core;(\) = (0). (Note that t must divides |\|)

Let €¢(n) and Dt(n) be the set of t-core and t-divisible partition resp of size n. We
also denote ct(n) and d¢(n) to be the cardinality of the above sets.

For t = 3 and n = 4, we see D3(4) is empty and €3(4) consists of
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Partition Division

Let P, D; and €; be union of P(n), D¢(n) and €(n) over all n.

Theorem (Partition Division)

There is a natural bijection
AP —= & x Dy
given by A¢(\) = (p,v), where p = core¢(\) and v is the 't-quotient’. Moreover,
Al = lpl + [¥|

This a generalization of the euclidean division for natural numbers which can be
stated as Ay : N — {0,1,...,t — 1} x tN is a bijection.



Partition Division

Corollary
We have the following identity of generating functions

Zp(k (th(k )(Zdt(k )

k=0

The following identities are known :



Asymptotics

We know the following asymptotic results (work by Hardy-Ramanujan)

exp <7r1/%) t(t42)/2 exp (7r1/23—">

anv3 de(n) ~ 3(3t+5)/43(t+1) /4 (t43)/4 1)

p(n) ~

But c¢(n) does not have a similar asymptotic result.

e c(n) =1 for n a triangular number and zero otherwise.

a(n= > (:)

d|(3n+1)

e Gravnille and Ono

e Gravnille and Ono showed t-core partition conjecture that for t > 3,

ct(n) >0




First Theorem

L£)
Ci(n) == Z ce(n—it).

i=0

There is a combinatorial reason for taking this sum. Let 7 : €; X D; — €; be the
projection, then

Ce(n) =|w(Ac(P(n)

#{coret(N\) | A a partition of n}.




When t is a prime number, C¢(n) can be defined to be the number of t-blocks in the
t-modular representation theory of the symmetric group Sp.

Theorem (AA,SS)

We have

(2m)(t-1)/2 ( t? — 1>(H)/2 (t-2)/2
Ci(n) = n+ + O(n )-
t(t+2)/2 r(f%l) 24



Distribution of the size of t-core of
uniformely random )\ € P(n)



Random Variable

Definition

Fix t > 2. Let A be a uniformly random partition of n and Y;,, be random variable on
N> given by

Yn = | corer(N)].

The probability mass function of Y, is given by

in() = FHAT 2 [coree(N)| = k}
p(n)

_ Ct(k)dt(n — k)
p(n)

We are interested in the convergence of Y.




Continuous Random Variable

Let X, be continuous random variables defined on [0, c0) with the probability density
function f, = f,,+ given by

fo(x) = Vnee([xy/n]) de(n — LX\/EJ)

Note that



Gamma Distribution

Theorem (Main Result (AA,SS))

The random variable X, converges weakly to a gamma-distributed random variable
X with shape parameter o = (t — 1)/2 and rate parameter 3 = 7/+/6.

Recall that the gamma distribution with shape parameter o > 0 and rate parameter
B > 0 is a continuous random variable on [0, c0) with density given by

B0t ep(—px), x>0,
Y(x) = § F(a) (2)

0, x <0,

where I is the standard gamma function.



Figure 1: Comparison of the limiting CDFs and densities for small values of n with t = 5. A red
solid line is used for the limiting distribution, dashed blue for n = 20, dash-dotted green for n = 62
and dotted magenta for n = 103. In (a) the CDFs, and in (b) the densities, are plotted for X and

these X,'s.



Expected size of the t-cores

Theorem (AA,SS)

The expectation of the size of t-core for a uniformly random partition of size n is
asymptotic to (t — 1)\/6n/27.
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Figure 2: The average size of the 3-core for partitions of size 1 to 100 in blue circles, along with
the result from Corollary, v/6x /7, as a red line.



A brief introduction to abacus



Definition

An abacus or 1-runner is a function w : Z — {0, 1} such that w(m) = 1 for m << 0
and w(m) =0 for m >> 0. We say w is justified at position p if w; = 1 (resp

w; =0) fori < p (resp. i > p).

Any abacus can be transformed to a justified by moving 1's to the left. We say w is
balanced if after this transformation, we get abacus justified at 0.

w = ---1110011011001000 - - -

1
w' = ---1111111100000000 - - -



Abaci and Partitions

There is a natural bijection

P = {partitions /\} > {Balanced Abaci W}.

o cell c in X\ < pair of positions i < j with (w;, w;) = (0,1).

c — ---1110100011010000 - - -




Abaci and Partitions

There is a natural bijection

P = {partitions /\} > {Balanced Abaci W}.

o cell c in X < pair of positions i < j with (w;, w;) = (0,1).

® Removing rim-hook of ¢ «+ Swapping (w;, w;) = (0,1) to (w/,w/) = (1,0).

c — ---1110100011010000 - - -

— ---1110110010010000 - - -




t-runner abaci

Let w be a 1-runner abacus, then the t-runner of w is the t-tuple (\°, ..., Af=1) of

1-runner abaci given by
i
Ap = Woeti

Let t =3 and A = (5,4,2,2) then w = (---1100110010100- - - ) then

W= foooy 1, 1, @ @ @ 6 ...)
M= (.., 1, 1, 1, 0, 1, 0, i1
XM= (.., 1, 0, 1, 1, 0, 0, ...).

What is core¢(\)?



t-core of a partition

The t-core of a partition )\, denoted core:()\), is the partition obtained by removing
as many rim hooks of size t as possible.

Let t =3 and X\ = (5,4, 2,2), then corez(\) = (2,1,1).
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t-runner abaci

Let w be a 1-runner abacus, then the t-runner of w is the t-tuple (\°, ..., Af=1) of

1-runner abaci given by
i
An = Woeti

Let t =3 and A = (5,4,2,2) then w = (---1100110010100- - - ) then

W= foooy 1L, 1, @ @ @ @ ...)

M= (.., 1, 1, 1, 0o, 1, 0, ...),

XM= (.., 1, 0, 1, 1, 0, 0, ...).
Then corez(\) = (2,1,1) is given by

B= ooy L, L, @ @ 0O @ .oo)

pt= (.., 1, 1, 1, 1, 0, 0, ...),

= (.., 1, 1, 1, 0, 0, 0, ...).

Let (po, p1, p2) be the position of justification which is (-1,1,0).



t-quotient partition

Definition

Let \ be a partition, (VO, Cey l/t_l) be corresponding t-runners. Let v’ be the
balanced 1-runner obtained by shifting \' appropriately. We denote t-quotient
partition to be the partition v corresponding to t-runner abacus (1°,...,vt1).

Let t =3 and A = (5,4,2,2) then w = (---1100110010100- - - ) then

W= foooy 1, 1L, @ @ @ 6 ...)
M= (.., 1, 1, 1, 0o, 1, 0, ...),
XM= (.., 1, 0, 1, 1, 0, 0, ...).

Then the p = corez(A) = (2,1,1) and 3-quotient v = (3,3, 2,1) is given by

= (oo L, L L, @ @ @ .oo)
'= (.., 1, 1, 0, 1, 0, 0, ...),
2= (..., 1, 0, 1, 1, 0, 0, ...).

Note also |A| = |p| + |v| and v is by construction a 3-divisible partition.



Random Hook-length




Hook Length

Corollary (of the Main Result)

For a uniformly random cell ¢ of a uniformly random partition \ of n, the probability
that the hook length of c in X is divisible by t is 1/t + O(n—1/?).

Proof.
Observe that removing a t-rim hook reduces the number of hooks hc with t|hc by

exactly one. So, for any partition A - n

n — | cores(N)]

#{c e x| tlhc} = .

Thus the probability that t divides h. as n — oo is

" n— E(|core:(N)]) 1 i t—1 /6
im —————22 — Z _ [im ——4/—,
n—oco tn t n—oo 2t n



Removing size t rim-hook

Consider the partition A = (6,4,3,1) and let t = 4.

I
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Removing the shaded size 4 rim-hook we obtain X' = (6, 4).

i No. of hook lengths in A = i | No. of hook lengths in \' = i
mod 4 mod 4

0|3 2

1(5 3

2| 4 B

3|2 2

Therefore, we have removed two cells congruent to 1 modulo 4, but none congruent

to 3 modulo 4.



Partition Division

Let P, D; and €; be union of P(n), D¢(n) and €(n) over all n.

Theorem (Partition Division)

There is a natural bijection
AP — € XDy
given by A¢(X) = (p,v), where p = coret(\) and v is the 't-quotient’. Moreover,

[Al'= lpl + v
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A natural action of S;

We define the action of S; on D:(n), the set of t-divisible of n, partitions induced by
the action S; on the corresponding t-runners

0’~(VO7I/17...,Vt71):(VUO,VUI7...,I/U"L’1) (3)

Note that the above action preserves the size of the t-divisible partition.

We define the action of o € S; on P(n) by oA = A; Y(p, ov).



b-smoothing of t-divisible partitions

Definition

The b-smoothing of a t-divisible partition v, denoted CP, is the union of cells in the

v’
Young diagram of v whose corresponding (0, 1) pairs are at least (b + 1) columns
apart in the t-runner abacus of v.

Let v = (7,3,2) be a 3-divisible partition, whose 3-runner abacus is given by

W= (.., 1, 1, 0, 0, 0, 1, 0, ...)
v'= (.., 1, 1, 0, 1, 0, 0, 0, ...)
= (.., 1, 1, 1, 0, 0, 0, 0, ...)

Then the following are the b-smoothings C? :

veD; | CO @7 @
(7,3,2) | (7,2) (4) (2)
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C? gives a sequence of sub partitions of v,
vDCloCloc2...
Moreover, the b-smoothings are invariant under action of St.

€ =C

Lemma

For a uniformly random cell c € le’ of uniformly random v, the probability that the
hook length hZ is congruent to i modulo t, where i # 0, is independent of i.



Randomizing modulo class of hook-length

Let v = (7,3,2) be a 3-divisible partition, whose 3-runner abacus is given by

WO= (.., 1, 1, 0o, 0, 0O, 1, 0, ...)
vl= (.., 1, 1, 0, 1, 0, 0, 0, ...)
v»= (.., 1, 1, 1, 0, 0, 0, 0, ...)

Let o0 = (213) € S3, then o - v = (8,2, 2)

= ooy, L, L, @ 1L @ @ @ ...)

Vo1 — (, i, 1, 0o, 0, O, 1, 0O, )

v2= (.., 1, 1, 1, 0, 0, 0, 0, ...)

8 [ L[] fof [T 11 T[T1]
- (4)




Canonical smoothing

Let A¢(N) = (p,v) and (p', ..., p'~ 1) be the t-runner of the t-core p. Recall p' are
justified (say at positions p;).
Let
by =

max i — Pj
1§f<j§t71|p' Pl

then we define canonical smoothing Cy = C,f’A as sub partition of v.

Let p=(1)and t =3

K= (.., 1, 1, 1, 1, 0, 0, O, )
b= (.., 1, 1, 1, 0, 0, 0, O, )
p2_ ( 9 17 9 9 07 07 07 07 )

So (po, p1, p2) = (1,0, —1), hence by =2



Example

Let A = (10, 3). Then A3(X) = (p,v), where v = (7,3,2) and p = (1). The
3-runner abacus of p is given by (po, p1, p2) = (1,0, —1) which implies by = 2.

W= (.., 1, 1, 06, 0 o

v= (.., 1, 1, 0, 1, o0,

= (.., 1, 1, 1, 0, O,
and in the t-runner of A

N= (.., 1, 1, 1, 0, 0O

M= (.., 1, 1, 0, 1, 0,

X= (.., 1, 1, 0, 0, 0,

iy
0,
0,

07

)
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Canonical smoothing inside \

Let X be a partition with A¢(\) = (p,v). Then there exists an injective map ¢ that
takes the cells in Cy, to the cells in \ such that for any cell c € Cy, the hook lengths

e = h. mod t

c

v=(7,3,2) A= (10,3)
by =9,hy =8 hy =9,hy =11



Benefit of Canonical smoothing

For a uniformly random cell c € ¢(Cy) C X of uniformly random X, the probability
that the hook length hi‘ is congruent to i modulo t, where i # 0, is independent of i.

So it will be enough to show that for random A,

@(Cy) is 'majority’ of cells in A.



#(Cy) is 'most’ of A

For any partition A = n with A+(\) = (p,v),

lv| =[Gl < #{c € v | he < t(bx +1)} = O(t(bx + 1)v/n). 5)
A simple counting also gives us by < 2./|coret(\)|.
Since expected size of core;(\) is O(y/n),

IAl = [&(CX)| = [ coree(A)] + [v] — | A
= O(n®/*)
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Second main result

So far we have

e For /i =0, probability that hc =/ mod tis 1/t.

e For i # 0 and c € ¢(C,), probability that hc =i mod t is independent of i.
Using the size estimate and the above two result we obtain :

For a uniformly random cell ¢ of a uniformly random partition X of n, the probability

that the hook length of c in \ is congruent to i modulo t is asymptotic to 1/t for
any i € {0,1,...,t—1}.



e Distribution of the size of t-cores of uniformly random partition on n 'converges’
to Gamma distribution (upon scaling) as n — oo.

36



e Distribution of the size of t-cores of uniformly random partition on n 'converges’
to a Gamma distribution (upon scaling) as n — oo.

e The expected value of core;(\) is of order \/n, it is asymptotic to

(t —1)v6n/2r.
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e Distribution of the size of t-cores of uniformly random partition on n 'converges’
to a Gamma distribution (upon scaling) as n — oo.

e The expected value of coret(\) is of order \/n, it is asymptotic to
(t —1)v6n/2r.

e There is a new construction "smoothing” of partitions which can be explored
further.
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e Distribution of the size of t-cores of uniformly random partition on n 'converges’
to a Gamma distribution (upon scaling) as n — oo.

The expected value of coret(\) is of order \/n, it is asymptotic to
(t —1)V6n/2m.

e There is a new construction "smoothing” of partitions which can be explored
further.

e Hook-lengths are randomly distributed over modulo classes of t.
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Thank youl!
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