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Graph vertex proper coloring

Let G be a finite simple connected graph with a totally ordered vertex
set I = {α1, . . . , αn}. I will be identified with the simple roots of g.

Chromatic polynomial:

χG (q) = The number of ways of coloring G ’using’ q colors.

Results: 1. χG (q) is a polynomial in q. 2. χG (q) = q(q − 1)n−1 for any
tree with n vertices.
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Expression for chromatic polynomial

Chromatic polynomial has the following well–known description.

Consider an ordered k–tuples (P1, . . . ,Pk) such that:

(i) each Pi is a non–empty independent subset of I , i.e. no two vertices
have an edge between them; and

(ii) the disjoint union of P1, · · · ,Pk is equal to I .

We denote by Pk(G ) the set of all stable partitions with k parts. Then
we have

χG (q) =
∑
k≥0

|Pk(G )|
(
q

k

)
. (1)
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Vertex k-multicoloring of a graph

k = (2, 2, 2, 2, 2, 2) ∈ Zn
≥0 - coloring

We let πGk (q) be the number of such coloring using q colors. This is called
the k-generalized chromatic polynomial of G .
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Expression for k−chromatic polynomials

k−chromatic polynomials has the following well–known description.

We denote by Pk(k,G ) the set of all ordered k–tuples (P1, . . . ,Pk) such
that:

(i) each Pi is a non–empty independent subset of I , i.e. no two vertices
have an edge between them; and

(ii) the disjoint union of P1, · · · ,Pk is equal to the multiset
{αi , . . . , αi︸ ︷︷ ︸

ki times

: i ∈ I}.

Then we have

πGk (q) =
∑
k≥0

|Pk(k,G )|
(
q

k

)
. (2)
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Relation between πG
k (q) and χG (q)

The graph G (k) is the join of G with respect to k. Assume k = (3, 2, 2)

πGk (q) =
1

k!
π
G(k)
1 (q), where k! =

n∏
i=1

ki !
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Chromatic symmetric function: R. Stanley, 1995 [2]

XG = XG (x1, x2, . . . ) =
∑
κ

proper-coloring

xκ

XG (1, 1, . . . , 1︸ ︷︷ ︸
q−times

, 0, 0, . . . ) = χG (q)
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Expression for Chromatic symmetric function

We have shown that,

χG (q) =
∑
k≥0

|Pk(G )|
(
q

k

)
. (3)

We have the following expression for chromatic symmetric function.

XG =
∑
k≥1

∑
P∈Pk (G)

P=(P1,P2,...,Pk )

∑
J∈Pk (N)

J={i1,i2,...,ik}

x
|P1|
i1

x
|P2|
i2
· · · x |Pk |

ik

Stanley: XG determines the graph G?
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Answer: No

XG = XH = 2m̃221 + 4m̃2111 + m̃11111

XP4 = 24m1111 + 6m211 + 2m22, XS4 = 24m1111 + 6m211 + m31

S4 is the claw-graph K1,3.

Stanley:

Does there exist two non-isomorphic trees with the same chromatic
symmetric function?
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Positivity results

Monomial symmetric functions

Let aλ be the number of stable partitions of G of type λ. Then

XG =
∑
λ`d

aλm̃λ.

Power sum symmetric functions

For any graph G , the symmetric function w(XG ) is p−positive.

Elementary symmetric functions

1.Let G be the claw-graph then XG = 3e4 + 5e31 − 2e22 + e221.
2.For any graph G we have sink(G , j) =

∑
λ`d

l(λ)=j

cλ.

3.If the complement of G is bipartite, then cλ ≥ 0.
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Positivity results

Schur functions

Let G be the claw-graph then XG = s31 − s22 + 5s221 + 8s1111.

Conjecture

Let G be the incomparability graph of a 3+1-free poset. Then XG is
e−positive.

Inc(3+1) = K1,3 leads to ask weather any claw-free graph is e−positive?

XG = 12e6 + 18e51 + 12e42 − 6e33 + 6e441 + 6e321.

G. Arunkumar, (IISERM) Graph Coloring and Lie algebras April 29, 2020 11 / 36



Positivity results

Theorem (Gasharov)

Let G be the incomparability graph of a 3+1-free poset. Then XG is
s−positive. Moreover,

XG =
∑
λ`d

f λ(P)sλ

where f λ(P) denote the number of P−tableaux of shape λ.

Let P be a finite poset with d elements. A P−tableau of shape λ ` d is a
map τ : P → N satisfying

1 | τ−1(i) |= λi for all i ,

2 τ is a proper coloring of Inc(P),

3 Suppose τ−1(i) = {u1 < · · · < uλi} and
τ−1(i + 1) = {v1 < · · · < vλi+1

} then vj 6< uj for all 1 ≤ j ≤ λi+1.
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Chromatic polynomial and Kac-Moody Lie algebras

Theorem [R.Venkatesh, Sankaran Viswanath] [4]

Let G be the graph of a Kac-Moody algebra g. Given a π ∈ LG , define
mult π =

∏
p ∈π

mult
(
p
)
. Given these notions we have,

χG (q) =
∑
π ∈ LG

(−1)n−|π| mult π q|π|

Corollary: |χG (q)[q]| = mult (α1 + · · ·+ αn).
Result:

χG (q) =
∑
π ∈ LG

(−1)n−|π| µ(π) q|π|.

Corollary:
multπ = µ(π) for π ∈ LG .
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Example

Bond lattice χG (q) = q4 − 3q3 + 3q2 − q

−q

3 q2

−3 q3

q4
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Borcherds-Cartan Matrix

Borcherds–Cartan Matrix

A real matrix A = (aij)i ,j∈I is said to be a Borcherds–Cartan matrix if the
following conditions are satisfied for all i , j ∈ I :

1 A is symmetrizable,

2 aii = 2 or aii ≤ 0,

3 aij ≤ 0 if i 6= j and aij ∈ Z if aii = 2,

4 aij = 0 if and only if aji = 0.

Recall that a matrix A is called symmetrizable if there exists a diagonal
matrix D = diag(εi , i ∈ I ) with positive entries such that DA is symmetric.
Set I re = {i ∈ I : aii = 2} (real simple roots) and I im = I\I re.
If I = I re , then A is a generalized Cartan matrix.
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Borcherds algebras

The Borcherds algebra g = g(A) associated to a Borcherds–Cartan matrix
A is the Lie algebra generated by {ei , fi , hi : i ∈ I} with the following
defining relations:

(R1) [hi , hj ] = 0 for i , j ∈ I ,

(R2) [hi , ek ] = aikei , [hi , fk ] = −aik fi for i , k ∈ I ,

(R3) [ei , fj ] = δijhi for i , j ∈ I .

(R4) (ad ei )
1−aij ej = 0, (ad fi )

1−aij fj = 0 if i ∈ I re and i 6= j .

(R5) [ei , ej ] = 0 and [fi , fj ] = 0 if i , j ∈ I im and aij = 0.

This definition leads to an interesting combinatorial object, known as free
partially commutative Lie algebras, when I = I im.
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Graph of a Borcherds algebra

The vertex set of G is I , and there is an edge between vertices i , j iff
aij 6= 0.

Borcherds-Cartan Matrix
2 −3 0 −6 −1
−3 −1 −2 0 −π
0 −2 2 −1 −4
−6 0 −1 2 0
−1 −π −4 0 0



Associated graph

The graph associated to the matrix A is the graph of the Lie algebra g(A).
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Generalized chromatic polynomial and Borcherds algebras

Theorem, [-,Deniz Kus,R.Venkatesh], [1]

Let G be the graph of a Borcherds algebra g, Assume that
k = (k1, k2, . . . , kn) satisfies: ki ∈ {0, 1} for all i ∈ I re. Then

πGk (q) = ε(k)
∑

J∈LG (k)

(−1)|J|
∏
J∈J

(
q mult(J)

D(J, J)

)
.

For J ∈ LG (k) we denote by D(J, J) the multiplicity of Ji in J. When
ki = 1 for all i , this reduces to the above given expression.

Corollary: Root multiplicity formula

mult k =
∑
`|k

µ(`)

`

∣∣∣πGk/`(q) [q]
∣∣∣ ,

∣∣πGk (q) [q]
∣∣ denotes the absolute value of the coefficient of q in πGk (q).
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Idea of the proof

denominator identity

U :=
∑
w∈W

ε(w)
∑
γ∈Ω

ε(γ)ew(ρ−γ)−ρ =
∏
α∈∆+

(1− e−α)dim gα

where Ω is the set of all γ ∈ Q+ such that γ is a finite sum of mutually
orthogonal distinct imaginary simple roots.

For a Weyl group element w ∈W , we fix a reduced expression
w = si1 · · · sik and let I (w) = {αi1 , . . . , αik}. For γ ∈ Ω we set
I (γ) = {α ∈ Πim : α is a summand of γ} and

J (γ) = {w ∈W \{e} : I (w) ∪ I (γ) is an independent set}.

Every stable set in G can be thought of as J (γ) for some w and γ.
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Idea of the proof

Main lemma

Fix w ∈W and γ ∈ Ω. We write −(w(ρ− γ)− ρ) =
∑

α∈Π bα(w , γ)α.
Then we have

(i) bα(w , γ) ∈ Z+ for all α ∈ Π and bα(w , γ) = 0 if α /∈ I (w) ∪ I (γ),

(ii) I (w) = {α ∈ Πre : bα(w , γ) ≥ 1} and bα(w , γ) = 1 if α ∈ I (γ),

(iii) If w ∈ J (γ), then bα(w , γ) = 1 for all α ∈ I (w) ∪ I (γ) and
bα(w , γ) = 0 else,

(iv) If w /∈ J (γ) ∪ {e}, then there exists α ∈ Πre such that bα(w , γ) > 1.

We set η(k) =
∑

i∈I kiαi ∈ Q+. Calculate the co-efficient of e−η(k) in Uq.

We observe that,
ew(ρ−γ)−ρ =

∏
α∈I (w)∪I (γ)

e(−bα(w ,γ))α =
∏

α∈I (w)∪I (γ)

(Xα)bα(w ,γ) which is an

element of C[Xα1 , . . . ,Xαn ]
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How to recover XG from the denominator identity

denominator identity

U :=
∑
w∈W

ε(w)
∑
γ∈Ω

ε(γ)ew(ρ−γ)−ρ =
∏
α∈∆+

(1− e−α)dim gα

Modified denominator identity

Let X be an indeterminate. Then we have U(X ) :=∑
w∈W

ε(w)
∑
γ∈Ω

ε(γ)X ht((ρ−γ)−ρ)ew(ρ−γ)−ρ =
∏
α∈∆+

(1− X ht(α)e−α)dim gα

Let X1,X2, . . . be a collection of commuting indeterminates. We study the
properties of the formal product of the Weyl denominators

∏∞
i=1 U(Xi ).
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Weyl denominators and the G-elementary symmetric
functions (Generating function of trivial heaps over G )

Stanley [3] defined the G -analogue of the ith elementary symmetry
function as follows.

eGi =
∑
S

(∏
α∈S

Xα

)
,

where Xα = e−α and S ranges over all i-element stable subsets of G . For
a partition λ = (λ1, λ2, . . . , λk), we define eGλ =

∏k
i=1 e

G
λi

.

U(X ) =
∑

(w ,γ)∈W×Ω

ε(w , γ)X ht((ρ−γ)−ρ)ew(ρ−γ)−ρ, (4)

=
∑

(w ,γ)∈W×Ω
stable

ε(w , γ)ew(ρ−γ)−ρ +
∑

(w ,γ)∈W×Ω
not stable

ε(w , γ)ew(ρ−γ)−ρ,(5)

= U1(X ) + U2(X ) (say), (6)

We define U1(X ) to the stable part of the Weyl denominator U(X ).
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Weyl denominators and the G-elementary symmetric
functions

Now, from the main lemma, it is easy to see that

U1(X ) =
∑

(w ,γ)∈W×Ω
stable

ε(w , γ)X ht((ρ−γ)−ρ)ew(ρ−γ)−ρ

=

α(G)−independence number of G∑
k≥0

∑
(w ,γ)∈W×Ω

stable
|I (w)∪I (γ)|=k

(−1)kX kew(ρ−γ)−ρ

=

α(G)∑
k≥0

∑
S-stable
|S|=k

(−X )k

(∏
α∈S

e−α

)
=

α(G)∑
k≥0

(−X )keGk ,

This shows that eGk can be recovered from the Weyl denominator.
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Weyl denominators and the G-elementary symmetric
functions

A number partition λ = (λ1, . . . , λk) is said to be a stable number
partition of G if 1 ≤ λi ≤ α(G ) for all 1 ≤ i ≤ k. The following
proposition gives the connection between the modified Weyl denominators,
monomial symmetric functions and G−elementary symmetric functions.

Proposition

With the notations as above, we have

∞∏
i=1

U1(Xi ) =
∑
λ

stable

ε(λ)Mλ(x)eGλ

The proof follows from the following equation

∞∏
i=1

U1(Xi ) =
∞∏
i=1

( α(G)∑
k≥1

(−Xi )
keGk

)
.
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Chromatic symmetric function from the Weyl denominators

Theorem

Fix a tuple of non-negative integers k = (ki : i ∈ I ) such that ki ≤ 1 for
i ∈ I re. We set η(k) =

∑
i∈I kiαi ∈ Q+. Then

( ∑
λ

stable

ε(λ)Mλ(x)eGλ

)
[e−η(k)] =

( ∞∏
i=1

U1(Xi )
)

[e−η(k)] = ε(k) XG
k .
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proof

The required coefficient is equal to
∞∑
k=1

∑
J∈Nk

J=(i1,i2,...,ik )

∑
((w1,γ1),...,(wk ,γk ))∈(W×Ω)k

ε(γ)ε(w)
∏k

j=1

(
X
`(w)+ht(γ)
ij

)
where the sum ranges over all k–tuples
((w1, γ1), (w2, γ2), . . . , (wk , γk)) ∈ (W × Ω)k such that

• (wi , γi ) is stable for all 1 ≤ i ≤ k,

• I (w1) ∪̇ · · · ∪̇ I (wk) = {αi : i ∈ I re, ki = 1},
• I (γ1) ∪̇ · · · ∪̇ I (γk) = {αi , αi , . . . , αi︸ ︷︷ ︸

ki−times

: i ∈ I im},

• I (wi ) ∪ I (γi ) 6= ∅ for each 1 ≤ i ≤ k ,

• γ1 + · · ·+ γk =
∑
i∈I im

kiαi .
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proof

It follows that
(
I (w1) ∪ I (γ1), . . . , I (wk) ∪ I (γk)

)
∈ Pk

(
k,G

)
and each

element is obtained in this way. So the sum ranges over all elements in

Pk(k,G ). Hence
(∏∞

i=1 U(Xi )
)

[e−η(k)] is equal to

∑
k≥1

∑
P∈Pk (k,G)

P=(P1,P2,...,Pk )

∑
J ∈Nk

J=(i1,i2,...,ik )

x
|P1|
i1

x
|P2|
i2
· · · x |Pk |

ik

This completes the proof.
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Chromatic symmetric function and the root multiplicities

We have the following expression for the chromatic symmetric function in
terms of root multiplicities of the Borcherds algebra g.

Theorem

Let G be the graph of a Borcherds algebra g. For a fixed tuple of
non-negative integers k = (ki : i ∈ I ) such that ki ≤ 1 for i ∈ I re. Then we
have

XG
k =

∑
J∈LG (k)

J̄={J1,...,Jk}

(−1)ht(η(k))+|J̄|

(∏
J∈J̄

(
mult(β(J))

D(J, J)

))
ptype(J), (7)

where J̄ is the underlying set of the multiset J.
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Chromatic symmetric function and the root multiplicities

Corollary

XG =
∑
J∈LG

(−1)l−|J|(mult(J)) ptype(J), (8)

where LG is the bond lattice of G.

We get a Lie theoretic proof of the following theorem of Stanley [2].

Theorem

XG =
∑
J∈LG

µ(0̂, J) ptype(J),

where LG is the bond lattice of G.
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G-power sum symmetric functions

The following relation is proved in [3].

− log(1− eG1 X + eG2 X 2− eG3 X 3 + · · · ) = pG1 X +pG2
X 2

2
+pG3

X 3

3
+ · · · (9)

The G analogues of power sum symmetric functions are defined using the
above equation. For a partition λ = (λ1, λ2, . . . , λk), we define
pGλ =

∏k
i=1 p

G
λi

.

Theorem

The G-power sum symmetric function pGλ is a polynomial with
non-negative integral coefficients.
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To prove Theorem 4, it is enough to prove it for pGn (n ∈ N). We assume
that all the simple roots of g are imaginary, then the modified denominator
identity of g∑

w∈W
ε(w)

∑
γ∈Ω

ε(γ)X ht((ρ−γ)−ρ)ew(ρ−γ)−ρ =
∏
α∈∆+

(1− X ht(α)e−α)dim gα

becomes

U(X ) :=
∑
γ∈Ω

(−1)ht(−γ)X ht γeγ =
∏
α∈∆+

(1− X htαe−α)dim gα (10)

We observe that, since all the simple roots are imaginary, the stable part
U1 of U is itself. We have proved that

U1(X ) =

α(G)∑
i≥0

(−X )ieGi = U(X ).

Hence

− log(1− eG1 X + eG2 X 2 − eG3 X 3 + · · · ) = − log(U(X ))

.
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This shows that the coefficient of X n

n in − log(U(X )) is equal to pGn . Now,
we calculate the same coefficient using the product side of Equation (10).

− log
( ∏
α∈∆+

(1− X htαe−α)dim gα
)

=
∑
α∈∆+

dim gα

(
− log(1− X htαe−α)

)
,

=
∑
α∈∆+

dim gα

(∑
k≥1

(X htαe−α)k

k
)
)
,

=
∑
k≥1

∑
m≥1

∑
α∈∆+

htα=m

((m)(dim gα)(e−kα))
Xmk

mk
.
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Hence, the coefficient of X n

n in − log(U(X )) is equal to∑
k|n

( ∑
α∈∆+

htα= n
k

(
n

k
)(dim gα)(e−kα)

)
=
∑
k|n

( ∑
α
k
∈∆+

ht α
k

= n
k

(
n

k
)(dim gα

k
)(e−α)

)
,

∑
α∈∆+
htα=n

(∑
k|α

(
n

k
)(dim gα

k
)
)
e−α,

=
∑
k≥1

∑
m≥1

∑
α∈∆+

htα=m

((m)(dim gα)(e−kα))
Xmk

mk
.

This shows that

pGn =
∑
α∈∆+
htα=n

(∑
k|α

(
n

k
)(dim gα

k
)
)
e−α

and the theorem follows.
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Thank you
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