G. Arunkumar, Chromatic symmetric function of graphs from Borcherds Lie algebra

G. Arunkumar, Indian Institute of Science Education and Research, Mohali.

April 29, 2020

1. What is chromatic symmetric function and why are they interesting?
2. Connection between the Borcherds algebras and Chromatic symmetric functions.
3. Applications.

Graph vertex proper coloring

Let G be a finite simple connected graph with a totally ordered vertex set $I = \{\alpha_1, \ldots, \alpha_n\}$. I will be identified with the simple roots of g.

Chromatic polynomial:

$$\chi_G(q) = \text{The number of ways of coloring } G \text{ 'using' } q \text{ colors.}$$

Results: 1. $\chi_G(q)$ is a polynomial in q. 2. $\chi_G(q) = q(q - 1)^{n-1}$ for any tree with n vertices.
Chromatic polynomial has the following well–known description. Consider an ordered k–tuples (P_1, \ldots, P_k) such that:

(i) each P_i is a non–empty independent subset of I, i.e. no two vertices have an edge between them; and

(ii) the disjoint union of P_1, \cdots, P_k is equal to I.

We denote by $P_k(G)$ the set of all stable partitions with k parts. Then we have

$$\chi_G(q) = \sum_{k \geq 0} |P_k(G)| \binom{q}{k}. \quad (1)$$
Vertex k-multicoloring of a graph

$k = (2, 2, 2, 2, 2, 2) \in \mathbb{Z}_{\geq 0}^n$ - coloring

We let $\pi_k^G(q)$ be the number of such coloring using q colors. This is called the k-generalized chromatic polynomial of G.
Expression for \(k\)–chromatic polynomials

\(k\)–chromatic polynomials has the following well–known description.

We denote by \(P_k(k, G)\) the set of all ordered \(k\)–tuples \((P_1, \ldots, P_k)\) such that:

(i) each \(P_i\) is a non–empty independent subset of \(I\), i.e. no two vertices have an edge between them; and

(ii) the disjoint union of \(P_1, \ldots, P_k\) is equal to the multiset \(\{\alpha_i, \ldots, \alpha_i : i \in I\}\). \(k_i\) times

Then we have

\[
\pi^G_k(q) = \sum_{k \geq 0} |P_k(k, G)| \binom{q}{k}.
\] (2)
Relation between $\pi^G_k(q)$ and $\chi_G(q)$

The graph $G(k)$ is the join of G with respect to k. Assume $k = (3, 2, 2)$

$$\pi^G_k(q) = \frac{1}{k!} \pi^G_1(q), \text{ where } k! = \prod_{i=1}^{n} k_i!$$

\[x^\kappa = x_1^2 x_2 x_3^2 x_5 \]

\[X_G = X_G(x_1, x_2, \ldots) = \sum_{\kappa \text{ proper-coloring}} x^\kappa \]

\[X_G(1, 1, \ldots, 1, 0, 0, \ldots) = \chi_G(q) \]
We have shown that,

$$\chi_G(q) = \sum_{k \geq 0} |P_k(G)| \binom{q}{k}. \quad (3)$$

We have the following expression for chromatic symmetric function.

$$X_G = \sum_{k \geq 1} \sum_{P \in P_k(G)} \sum_{J \in \mathcal{P}_k(\mathbb{N})} \sum_{P = (P_1, P_2, \ldots, P_k)} x_{i_1} |P_1| x_{i_2} |P_2| \cdots x_{i_k} |P_k|$$

Stanley: X_G determines the graph G?
Answer: No

These graphs have the same chromatic symmetric function:

\[X_G = X_H = 2\tilde{m}_{221} + 4\tilde{m}_{2111} + \tilde{m}_{11111} \]

\[X_{P4} = 24m_{1111} + 6m_{211} + 2m_{22}, \quad X_{S4} = 24m_{1111} + 6m_{211} + m_{31} \]

S4 is the claw-graph \(K_{1,3} \).

Stanley:

Does there exist two non-isomorphic trees with the same chromatic symmetric function?
Positivity results

Monomial symmetric functions
Let a_{λ} be the number of stable partitions of G of type λ. Then

$$X_G = \sum_{\lambda \vdash d} a_{\lambda} \tilde{m}_{\lambda}.$$

Power sum symmetric functions
For any graph G, the symmetric function $w(X_G)$ is $p-$positive.

Elementary symmetric functions
1. Let G be the claw-graph then $X_G = 3e_4 + 5e_{31} - 2e_{22} + e_{221}.$
2. For any graph G we have $\text{sink}(G,j) = \sum_{\lambda \vdash d} c_{\lambda}.$
3. If the complement of G is bipartite, then $c_{\lambda} \geq 0.$
Positivity results

Schur functions

Let G be the claw-graph then $X_G = s_{31} - s_{22} + 5s_{221} + 8s_{1111}$.

Conjecture

Let G be the incomparability graph of a $3+1$-free poset. Then X_G is $e-$positive.

Inc($3+1$) = $K_{1,3}$ leads to ask whether any claw-free graph is $e-$positive?

\[
X_G = 12e_6 + 18e_{51} + 12e_{42} - 6e_{33} + 6e_{441} + 6e_{321}.
\]
Positivity results

Theorem (Gasharov)

Let G be the incomparability graph of a $3+1$-free poset. Then X_G is s–positive. Moreover,

$$X_G = \sum_{\lambda | d} f^\lambda(P) s_\lambda$$

where $f^\lambda(P)$ denote the number of P–tableaux of shape λ.

Let P be a finite poset with d elements. A P–tableau of shape $\lambda | d$ is a map $\tau : P \to \mathbb{N}$ satisfying

1. $|\tau^{-1}(i)| = \lambda_i$ for all i,
2. τ is a proper coloring of $\text{Inc}(P)$,
3. Suppose $\tau^{-1}(i) = \{u_1 < \cdots < u_{\lambda_i}\}$ and $\tau^{-1}(i + 1) = \{v_1 < \cdots < v_{\lambda_i+1}\}$ then $v_j \not< u_j$ for all $1 \leq j \leq \lambda_i+1$. \qed
Theorem [R.Venkatesh, Sankaran Viswanath] [4]

Let G be the graph of a Kac-Moody algebra g. Given a $\pi \in L_G$, define $\text{mult } \pi = \prod_{p \in \pi} \text{mult } (p)$. Given these notions we have,

$$\chi_G(q) = \sum_{\pi \in L_G} (-1)^{n-|\pi|} \text{mult } \pi \ q^{|\pi|}$$

Corollary: $|\chi_G(q)[q]| = \text{mult } (\alpha_1 + \cdots + \alpha_n)$.

Result:

$$\chi_G(q) = \sum_{\pi \in L_G} (-1)^{n-|\pi|} \mu(\pi) \ q^{|\pi|}.$$

Corollary:

$$\text{mult } \pi = \mu(\pi) \text{ for } \pi \in L_G.$$
Example

Bond lattice

\(\chi_G(q) = q^4 - 3q^3 + 3q^2 - q - q \)

\(3q^2 \)

\(-3q^3 \)

\(q^4 \)
A real matrix \(A = (a_{ij})_{i,j \in I} \) is said to be a \textit{Borcherds–Cartan matrix} if the following conditions are satisfied for all \(i, j \in I \):

1. \(A \) is symmetrizable,
2. \(a_{ii} = 2 \) or \(a_{ii} \leq 0 \),
3. \(a_{ij} \leq 0 \) if \(i \neq j \) and \(a_{ij} \in \mathbb{Z} \) if \(a_{ii} = 2 \),
4. \(a_{ij} = 0 \) if and only if \(a_{ji} = 0 \).

Recall that a matrix \(A \) is called symmetrizable if there exists a diagonal matrix \(D = \text{diag}(\epsilon_i, i \in I) \) with positive entries such that \(DA \) is symmetric.

Set \(I^{re} = \{ i \in I : a_{ii} = 2 \} \) (real simple roots) and \(I^{im} = I \setminus I^{re} \).

If \(I = I^{re} \), then \(A \) is a generalized Cartan matrix.
Borcherds algebras

The Borcherds algebra \(g = g(A) \) associated to a Borcherds–Cartan matrix \(A \) is the Lie algebra generated by \(\{ e_i, f_i, h_i : i \in I \} \) with the following defining relations:

1. \([h_i, h_j] = 0 \) for \(i, j \in I \),
2. \([h_i, e_k] = a_{ik} e_i, \ [h_i, f_k] = -a_{ik} f_i \) for \(i, k \in I \),
3. \([e_i, f_j] = \delta_{ij} h_i \) for \(i, j \in I \).
4. \((\text{ad } e_i)^{1-a_{ij}} e_j = 0, \ (\text{ad } f_i)^{1-a_{ij}} f_j = 0 \) if \(i \in I^{\text{re}} \) and \(i \neq j \).
5. \([e_i, e_j] = 0 \) and \([f_i, f_j] = 0 \) if \(i, j \in I^{\text{im}} \) and \(a_{ij} = 0 \).

This definition leads to an interesting combinatorial object, known as free partially commutative Lie algebras, when \(I = I^{\text{im}} \).
The vertex set of G is I, and there is an edge between vertices i, j iff $a_{ij} \neq 0$.

Borcherds-Cartan Matrix

$$
\begin{bmatrix}
2 & -3 & 0 & -6 & -1 \\
-3 & -1 & -2 & 0 & -\pi \\
0 & -2 & 2 & -1 & -4 \\
-6 & 0 & -1 & 2 & 0 \\
-1 & -\pi & -4 & 0 & 0
\end{bmatrix}
$$

Associated graph

The graph associated to the matrix A is the graph of the Lie algebra $g(A)$.
Theorem, [-,Deniz Kus,R.Venkatesh], [1]

Let G be the graph of a Borcherds algebra \mathfrak{g}, Assume that $k = (k_1, k_2, \ldots, k_n)$ satisfies: $k_i \in \{0, 1\}$ for all $i \in I^\text{re}$. Then

$$\pi_k^G(q) = \varepsilon(k) \sum_{J \in L_G(k)} (-1)^{|J|} \prod_{J \in J} \left(q^{\text{mult}(J)} D(J, J) \right).$$

For $J \in L_G(k)$ we denote by $D(J, J)$ the multiplicity of J_i in J. When $k_i = 1$ for all i, this reduces to the above given expression.

Corollary: Root multiplicity formula

$$\text{mult } k = \sum_{\ell \mid k} \frac{\mu(\ell)}{\ell} \left| \pi_{k/\ell}^G(q) \right|,$$

$|\pi_k^G(q)|$ denotes the absolute value of the coefficient of q in $\pi_k^G(q)$.
Idea of the proof

denominator identity

\[U := \sum_{w \in W} \epsilon(w) \sum_{\gamma \in \Omega} \epsilon(\gamma) e^{w(\rho - \gamma) - \rho} = \prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim g_\alpha} \]

where \(\Omega \) is the set of all \(\gamma \in Q_+ \) such that \(\gamma \) is a finite sum of mutually orthogonal distinct imaginary simple roots.

For a Weyl group element \(w \in W \), we fix a reduced expression \(w = s_{i_1} \cdots s_{i_k} \) and let \(I(w) = \{ \alpha_{i_1}, \ldots, \alpha_{i_k} \} \). For \(\gamma \in \Omega \) we set \(I(\gamma) = \{ \alpha \in \Pi^m : \alpha \text{ is a summand of } \gamma \} \) and

\[\mathcal{J}(\gamma) = \{ w \in W \setminus \{ e \} : I(w) \cup I(\gamma) \text{ is an independent set} \} \].

Every stable set in \(G \) can be thought of as \(\mathcal{J}(\gamma) \) for some \(w \) and \(\gamma \).
Idea of the proof

Main lemma

Fix \(w \in W \) and \(\gamma \in \Omega \). We write
\[-(w(\rho - \gamma) - \rho) = \sum_{\alpha \in \Pi} b_\alpha(w, \gamma)\alpha.\]
Then we have

(i) \(b_\alpha(w, \gamma) \in \mathbb{Z}_+ \) for all \(\alpha \in \Pi \) and \(b_\alpha(w, \gamma) = 0 \) if \(\alpha \notin I(w) \cup I(\gamma) \),
(ii) \(I(w) = \{ \alpha \in \Pi^{re} : b_\alpha(w, \gamma) \geq 1 \} \) and \(b_\alpha(w, \gamma) = 1 \) if \(\alpha \in I(\gamma) \),
(iii) If \(w \in J(\gamma) \), then \(b_\alpha(w, \gamma) = 1 \) for all \(\alpha \in I(w) \cup I(\gamma) \) and \(b_\alpha(w, \gamma) = 0 \) else,
(iv) If \(w \notin J(\gamma) \cup \{ e \} \), then there exists \(\alpha \in \Pi^{re} \) such that \(b_\alpha(w, \gamma) > 1 \).

We set \(\eta(k) = \sum_{i \in I} k_i \alpha_i \in Q_+ \). Calculate the co-efficient of \(e^{-\eta(k)} \) in \(U^q \).

We observe that,
\[e^{w(\rho - \gamma) - \rho} = \prod_{\alpha \in I(w) \cup I(\gamma)} e^{-b_\alpha(w, \gamma)}\alpha = \prod_{\alpha \in I(w) \cup I(\gamma)} (X_\alpha)^{b_\alpha(w, \gamma)} \text{ which is an element of } \mathbb{C}[X_{\alpha_1}, \ldots, X_{\alpha_n}]\]
How to recover \(X_G \) from the denominator identity

denominator identity

\[
U := \sum_{w \in W} \epsilon(w) \sum_{\gamma \in \Omega} \epsilon(\gamma) e^{w(\rho-\gamma)-\rho} = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\dim g_\alpha}
\]

Modified denominator identity

Let \(X \) be an indeterminate. Then we have \(U(X) := \)

\[
\sum_{w \in W} \epsilon(w) \sum_{\gamma \in \Omega} \epsilon(\gamma) X^{\text{ht}((\rho-\gamma)-\rho)} e^{w(\rho-\gamma)-\rho} = \prod_{\alpha \in \Delta_+} (1 - X^{\text{ht}(\alpha)} e^{-\alpha})^{\dim g_\alpha}
\]

Let \(X_1, X_2, \ldots \) be a collection of commuting indeterminates. We study the properties of the formal product of the Weyl denominators \(\prod_{i=1}^{\infty} U(X_i) \).
Weyl denominators and the G-elementary symmetric functions (Generating function of trivial heaps over G)

Stanley [3] defined the G-analogue of the ith elementary symmetry function as follows.

$$e_i^G = \sum_S \left(\prod_{\alpha \in S} X_\alpha \right),$$

where $X_\alpha = e^{-\alpha}$ and S ranges over all i-element stable subsets of G. For a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, we define $e^G_\lambda = \prod_{i=1}^k e^G_{\lambda_i}$.

\[U(X) = \sum_{(w, \gamma) \in W \times \Omega} \epsilon(w, \gamma) X^{ht((\rho-\gamma)-\rho)} e^{w(\rho-\gamma)-\rho}, \]

\[= \sum_{(w, \gamma) \in W \times \Omega \text{ stable}} \epsilon(w, \gamma) e^{w(\rho-\gamma)-\rho} + \sum_{(w, \gamma) \in W \times \Omega \text{ not stable}} \epsilon(w, \gamma) e^{w(\rho-\gamma)-\rho}, \]

\[= U_1(X) + U_2(X) \text{ (say)}, \]
Weyl denominators and the G-elementary symmetric functions

Now, from the main lemma, it is easy to see that

$$U_1(X) = \sum_{(w,\gamma) \in W \times \Omega \text{ stable}} \epsilon(w,\gamma) X^{\operatorname{ht}((\rho-\gamma)-\rho)} e^{w(\rho-\gamma)-\rho}$$

$$\alpha(G)$$—independence number of G

$$= \sum_{k \geq 0} \sum_{(w,\gamma) \in W \times \Omega \text{ stable} \atop |I(w) \cup I(\gamma)| = k} (\epsilon(-1)^{k} X^{k} e^{w(\rho-\gamma)-\rho})$$

$$= \sum_{k \geq 0} \sum_{S-\text{stable} \atop |S| = k} (-X)^{k} \left(\prod_{\alpha \in S} e^{-\alpha} \right) = \sum_{k \geq 0} (-X)^{k} e_{G}^{k},$$

This shows that e_{G}^{k} can be recovered from the Weyl denominator.
Weyl denominators and the G-elementary symmetric functions

A number partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \) is said to be a **stable number partition** of \(G \) if \(1 \leq \lambda_i \leq \alpha(G) \) for all \(1 \leq i \leq k \). The following proposition gives the connection between the modified Weyl denominators, monomial symmetric functions and \(G \)-elementary symmetric functions.

Proposition

With the notations as above, we have

\[
\prod_{i=1}^{\infty} U_1(X_i) = \sum_{\lambda \text{ stable}} \epsilon(\lambda) M_{\lambda}(x) e^G_{\lambda}
\]

The proof follows from the following equation

\[
\prod_{i=1}^{\infty} U_1(X_i) = \prod_{i=1}^{\infty} \left(\sum_{k \geq 1} \left(-X_i \right)^k e^G_k \right).
\]
Theorem

Fix a tuple of non-negative integers $k = (k_i : i \in I)$ such that $k_i \leq 1$ for $i \in I^{re}$. We set $\eta(k) = \sum_{i \in I} k_i \alpha_i \in \mathbb{Q}_+$. Then

$$\left(\sum_{\lambda \text{ stable}} \epsilon(\lambda) M_{\lambda}(x) e^{G}_{\lambda} \right) [e^{-\eta(k)}] = \left(\prod_{i=1}^{\infty} U_1(X_i) \right) [e^{-\eta(k)}] = \epsilon(k) \ X_k^G.$$
The required coefficient is equal to
\[
\sum_{k=1}^{\infty} \sum_{J \in \mathbb{N}^k} \sum_{J = (i_1, i_2, \ldots, i_k)} \epsilon(\gamma) \epsilon(w) \prod_{j=1}^{k} \left(X_{i_j}^{\ell(w) + \text{ht}(\gamma)} \right)
\]
where the sum ranges over all \(k \)-tuples
\(((w_1, \gamma_1), (w_2, \gamma_2), \ldots, (w_k, \gamma_k)) \in (W \times \Omega)^k \) such that

- \((w_i, \gamma_i)\) is stable for all \(1 \leq i \leq k \),
- \(I(w_1) \cup \cdots \cup I(w_k) = \{ \alpha_i : i \in I^{\text{re}}, k_i = 1 \} \),
- \(I(\gamma_1) \cup \cdots \cup I(\gamma_k) = \underbrace{\{ \alpha_i, \alpha_i, \ldots, \alpha_i \}}_{k_i \text{-times}} : i \in I^{\text{im}} \),
- \(I(w_i) \cup I(\gamma_i) \neq \emptyset \) for each \(1 \leq i \leq k \),
- \(\gamma_1 + \cdots + \gamma_k = \sum_{i \in I^{\text{im}}} k_i \alpha_i \).
It follows that \((I(w_1) \cup I(\gamma_1), \ldots, I(w_k) \cup I(\gamma_k)) \in P_k(k, G)\) and each element is obtained in this way. So the sum ranges over all elements in \(P_k(k, G)\). Hence \(\left(\prod_{i=1}^{\infty} U(X_i)\right)[e^{-\eta(k)}]\) is equal to

\[
\sum_{k \geq 1} \sum_{\mathcal{P} \in P_k(k, G)} \sum_{\mathcal{J} \in \mathbb{N}^k} x_{i_1}^{P_1} x_{i_2}^{P_2} \cdots x_{i_k}^{P_k}
\]

This completes the proof.
Chromatic symmetric function and the root multiplicities

We have the following expression for the chromatic symmetric function in terms of root multiplicities of the Borcherds algebra \mathfrak{g}.

Theorem

Let G be the graph of a Borcherds algebra \mathfrak{g}. For a fixed tuple of non-negative integers $k = (k_i : i \in I)$ such that $k_i \leq 1$ for $i \in I^{\text{re}}$. Then we have

$$X_k^G = \sum_{\mathbf{J} \in L_G(k)} (-1)^{\text{ht}(\eta(k)) + |\bar{\mathbf{J}}|} \left(\prod_{J \in \bar{\mathbf{J}}} \left(\frac{\text{mult}(\beta(J))}{D(J, J)} \right) \right) p_{\text{type}(\mathbf{J})},$$

where $\bar{\mathbf{J}}$ is the underlying set of the multiset \mathbf{J}.
Corollary

\[X_G = \sum_{J \in L_G} (-1)^{|J|} (\text{mult}(J)) \, p_{\text{type}}(J), \]

where \(L_G \) is the bond lattice of \(G \).

We get a Lie theoretic proof of the following theorem of Stanley [2].

Theorem

\[X_G = \sum_{J \in L_G} \mu(\hat{0}, J) \, p_{\text{type}}(J), \]

where \(L_G \) is the bond lattice of \(G \).
The following relation is proved in [3].

\[- \log(1 - e_1^G X + e_2^G X^2 - e_3^G X^3 + \cdots) = p_1^G X + p_2^G \frac{X^2}{2} + p_3^G \frac{X^3}{3} + \cdots \] (9)

The \(G \) analogues of power sum symmetric functions are defined using the above equation. For a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \), we define

\[p_\lambda^G = \prod_{i=1}^{k} p_{\lambda_i}^G. \]

Theorem

The \(G \)-power sum symmetric function \(p_\lambda^G \) is a polynomial with non-negative integral coefficients.
To prove Theorem 4, it is enough to prove it for $p^G_n \ (n \in \mathbb{N})$. We assume that all the simple roots of g are imaginary, then the modified denominator identity of g

$$
\sum_{w \in W} \epsilon(w) \sum_{\gamma \in \Omega} \epsilon(\gamma) X^{ht((\rho-\gamma)-\rho)} e^{w(\rho-\gamma)-\rho} = \prod_{\alpha \in \Delta_+} (1 - X^{ht(\alpha)} e^{-\alpha})^{\dim g_{\alpha}}
$$

becomes

$$
U(X) := \sum_{\gamma \in \Omega} (-1)^{ht(-\gamma)} X^{ht\gamma} e^\gamma = \prod_{\alpha \in \Delta_+} (1 - X^{ht\alpha} e^{-\alpha})^{\dim g_{\alpha}} \quad (10)
$$

We observe that, since all the simple roots are imaginary, the stable part U_1 of U is itself. We have proved that

$$
U_1(X) = \sum_{i \geq 0} (-X)^i e_i^G = U(X).
$$

Hence

$$
- \log(1 - e_1^G X + e_2^G X^2 - e_3^G X^3 + \cdots) = - \log(U(X))
$$
This shows that the coefficient of $\frac{X^n}{n}$ in $-\log(U(X))$ is equal to p_n^G. Now, we calculate the same coefficient using the product side of Equation (10).

\[
-\log \left(\prod_{\alpha \in \Delta_+} (1 - X^{ht\alpha} e^{-\alpha})^{\dim g_{\alpha}} \right) = \sum_{\alpha \in \Delta_+} \dim g_{\alpha} \left(-\log(1 - X^{ht\alpha} e^{-\alpha}) \right),
\]

\[
= \sum_{\alpha \in \Delta_+} \dim g_{\alpha} \left(\sum_{k \geq 1} \frac{(X^{ht\alpha} e^{-\alpha})^k}{k} \right),
\]

\[
= \sum_{k \geq 1} \sum_{m \geq 1} \sum_{\alpha \in \Delta_+} \frac{(m)(\dim g_{\alpha})(e^{-k\alpha})}{mk} X^{mk}.
\]
Hence, the coefficient of $\frac{X^n}{n}$ in $-\log(U(X))$ is equal to

$$\sum_{k|n} \left(\sum_{\alpha \in \Delta_+ \atop \text{ht } \alpha = \frac{n}{k}} \left(\sum_{\frac{\alpha}{k} \in \Delta_+ \atop \text{ht } \frac{\alpha}{k} = \frac{n}{k}} \left(\frac{n}{k} \right) \left(\dim g_{\alpha k} \right) (e^{-k \alpha}) \right) \right) = \sum_{k|n} \left(\sum_{\frac{\alpha}{k} \in \Delta_+ \atop \text{ht } \frac{\alpha}{k} = \frac{n}{k}} \left(\sum_{\alpha \in \Delta_+ \atop \text{ht } \alpha = n} \left(\frac{n}{k} \right) \left(\dim g_{\alpha k} \right) \right) e^{-\alpha} \right),$$

$$= \sum_{k \geq 1} \sum_{m \geq 1} \sum_{\alpha \in \Delta_+ \atop \text{ht } \alpha = m} ((m) \left(\dim g_{\alpha} \right) (e^{-k \alpha})) \frac{X^{mk}}{mk}.$$

This shows that

$$p_n^G = \sum_{\alpha \in \Delta_+ \atop \text{ht } \alpha = n} \left(\sum_{k \mid \alpha} \left(\sum_{\frac{\alpha}{k} \in \Delta_+ \atop \text{ht } \frac{\alpha}{k} = \frac{n}{k}} \left(\frac{n}{k} \right) \left(\dim g_{\alpha k} \right) \right) \right) e^{-\alpha}$$

and the theorem follows.
G. Arunkumar, Deniz Kus, and R. Venkatesh.
Root multiplicities for Borcherds algebras and graph coloring.

Richard P. Stanley.
A symmetric function generalization of the chromatic polynomial of a graph.

Richard P. Stanley.
Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, & notable open problems.
Selected papers in honor of Adriano Garsia (Taormina, 1994).
Thank you