COMBINATORICS IN REPRESENTATION THEORY

MIDSEMESTER EXAMINATION

- (1) Compute the character values of the representation $V_{(2,2,1)}$ of S_5 .
- (2) Write **n** for $\{1, \ldots, n\}$. Let $V = \mathbf{C}[\mathbf{n}]$. What is the decomposition of $V \otimes V$ into irreducibles as a representation of S_n ? [Hint: express $V \otimes V$ as a permutation representation.]
- (3) Show that

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} m_{\lambda}(x) e_{\lambda}(y).$$

[Hint: the coefficient of $x^{\lambda}y^{\mu}$ is given by counting (0, 1)-matrices with row sums λ and column sums μ .]

(4) For each partition λ of n show that the number of permutations in S_n whose cycle decomposition is a partition of type λ is

$$\frac{n!}{1^{m_1}m_1!2^{m_2}m_2!\cdots}$$

where m_i is the number of times that *i* occurs in λ .

(5) Let $E : \Lambda_n \to \Lambda_n$ be the linear involution which takes s_{λ} to $s_{\lambda'}$. Show that $E(p_{\lambda}) = \epsilon(w_{\lambda})p_{\lambda}$, where w_{λ} is any element whose cycle decomposition is of type λ and ϵ is the sign character.

Date: 9th March 2011, 9:00AM-11:00AM.