COMBINATORICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 25/01,/2011

(1) In either of the cases:
G=S5, Xi={xc{l,....n}:|z|=Fk},
G =GLy(Fy), Xp={x CF]:dimz=kj}.
show that there exists an isomorphism of G-sets X, — X, _x
for all 0 < k& < n. Conclude that C[X}| and C[X,, | are
isomorphic representations of G.
(2) With notation as in the previous problem, show that
| Xk| > [ Xpq| if &£ <nj2.

(The sequence | X|, k =0,...,n is unimodal.)
(3) Give a combinatorial proof' of the Pascal identity for Gaussian
binomial coefficients:
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Deduce from it a second type of Pascal identity
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Optional challenge: give a combinatorial proof of the second

Pascal identity.
(4) Use Pascal’s identities above to prove the formal identities
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q where the coefficient of ¢’ is the number of partitions with at
most k parts, each part being no larger than n.

(5) From the second identity deduce that (”+k)q is a polynomial in

1A combinatorial proof is one which shows that two numbers are equal by giving
a bijection between sets with those numbers as cardinalities.
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