
COMBINATORICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 25/01/2011

(1) In either of the cases:

G = Sn, Xk = {x ⊂ {1, . . . , n} : |x| = k},
G = GLn(Fq), Xk = {x ⊂ Fn

q : dim x = k}.
show that there exists an isomorphism of G-sets Xk → Xn−k

for all 0 ≤ k ≤ n. Conclude that C[Xk] and C[Xn−k] are
isomorphic representations of G.

(2) With notation as in the previous problem, show that

|Xk| > |Xk−1| if k ≤ n/2.

(The sequence |Xk|, k = 0, . . . , n is unimodal.)
(3) Give a combinatorial proof1 of the Pascal identity for Gaussian

binomial coefficients:(
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Deduce from it a second type of Pascal identity(
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Optional challenge: give a combinatorial proof of the second
Pascal identity.

(4) Use Pascal’s identities above to prove the formal identities
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(5) From the second identity deduce that
(
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is a polynomial in

q where the coefficient of qi is the number of partitions with at
most k parts, each part being no larger than n.

1A combinatorial proof is one which shows that two numbers are equal by giving
a bijection between sets with those numbers as cardinalities.
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