COMBINATORICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 8TH MARCH 2011

- (1) Show that, if
- $a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n = (x \lambda_1)(x \lambda_2) \cdots (x \lambda_n).$ then every symmetric polynomial in $\lambda_1, \dots, \lambda_n$ can be expressed
- as a polynomial in $a_0, a_1, \ldots, a_{n-1}$. (2) Compute the Schur polynomials of homogeneous degree three.
- (3) Verify that the coefficient of the Schur polynomial s_{ν} in the expansion of power sum symmetric polynomial p_{μ} in terms of Schur polynomials is the value of the character of V_{ν} at the conjugacy class whose cycle decomposition is a partition of type μ .
- (4) Let D_n denote the determinant of the character table of $\mathbf{Z}/n\mathbf{Z}$. Determine the primes p which divide D_n .